

Tutorial 2g.03 Retaining wall construction

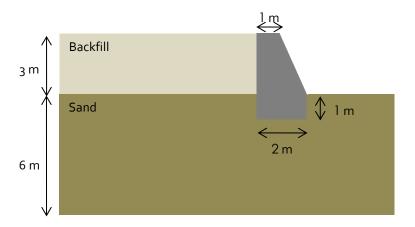
Ref: CESAR-TUT(2g.03)-v2025.0.1-EN

1. PREVIEW

Version supported: v2o25.0

1.1. Tutorial Objectives

Before analysis of any retaining wall, it is important to have an accurate picture of the job site conditions. Every retaining wall must be engineered to withstand the pressure from the soils and other loads behind and above them. Standard gravity wall analysis considers sliding, bearing and overturning forces. On sites with slopes or surcharges, a global stability check will also be necessary.


With CESAR-LCPC, we easily model the gravity wall and the stages of construction. The use of interface bodies to model the behaviour at the soil-structure interface is introduced. This will help to get an accurate value of forces applied to the wall.

1.2. Problem Specifications

General assumptions:

- Plane strain problem,
- Static analysis,
- No water table.

Geometry definition:

Boundary conditions:

A substratum is identified as the vertical bottom limit of the model.

Thus, supports conditions of the model are:

- Blocked horizontal displacements, u, on vertical sides.
- Blocked both horizontal, u, and vertical, v, displacements on bottom side.

The model dimensions are chosen according to the following usual recommendations.

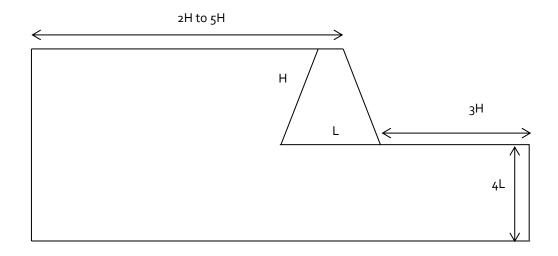
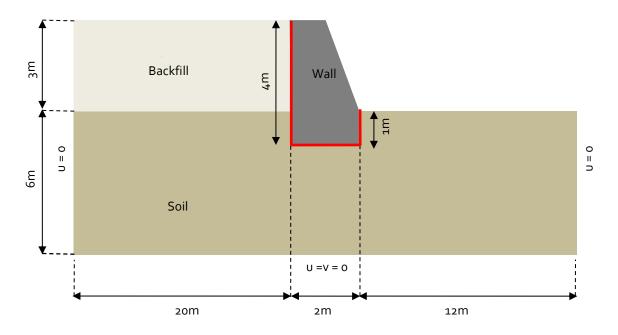
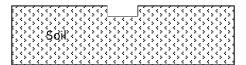
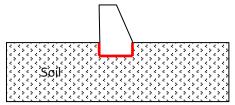


Figure 1 : Recommended dimensions for the modelling of a retaining wall

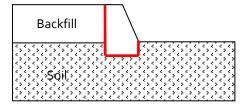



Figure 2: Final dimensions of the model

Material Properties:


		γ _h (kN/m³)	E (MPa)	ν	c' (kPa)	φ' (°)
Soil	Sand	19	50	0.3	5	36
Wall	Concrete	25	35000	0.2	-	-

Construction process:


- Stage o: Initial stress field
- Stage 1: Excavation in soil for the wall foundation.

- Stage 2: Building of the concrete wall with introduction of interface bodies at the soil-foundation interface (marked in red colour on the figure below).

- Stage 3: Backfill with introduction of interface bodies at the sand-wall interface (marked in red colour on the figure below).

- Stage 4: Analysis of the global stability, search of the safety factor using the c-phi reduction process.

2. GEOMETRY AND MESH

2.1. General settings

- Run CLEO₂D.
- Set the units in the menu Preferences > Units.
- In the tree, select the leaf **General/Length** and set the unit **m** in the bottom left combo box.
- In the tree, select the leaf **Mechanic/Force** and set the unit **kN** in the bottom left combo box.
- In the tree, select the leaf **Mechanic/Displacement** and set the unit **mm**.
- Click on Apply to close.
- Working plane, set the visible grid to 1m (dX = dY = 1m)

Use "Save as default" to set this system of units as your user environment.

2.2. Geometry edition

A new project always starts in the **GEOMETRY** tab.

Drawing of the geometry:

Using the tools *Points* or *Lines* and the grid snap, user will easily complete the geometry, as detailed below.

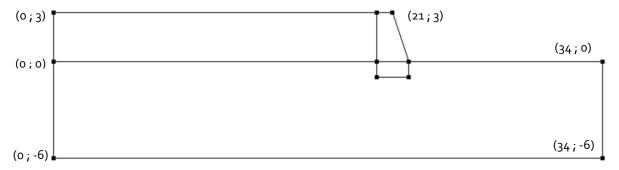


Figure 3: Edition of the geometry

Interface bodies:

Note here that we generate 2 sets of interfaces so that we can distinguish their behaviour.

- Select the edges of the bottom part of the wall inside the sand.
- Activate *Interface bodies* 2.

- Activate Interface bodies
- Set "Interface wall/sand" as body label.
- Select the edges of the top part of the wall in contact with the sand. 3.
- Activate Interface element bodies
 - Set "Interface wall/backfill" as name of the body.
 - Apply.

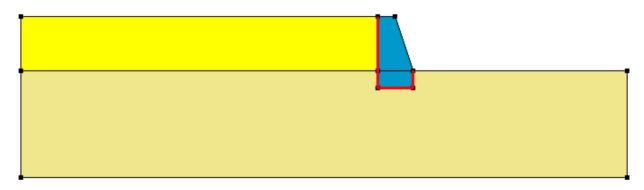
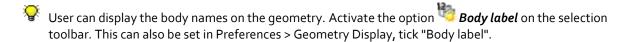
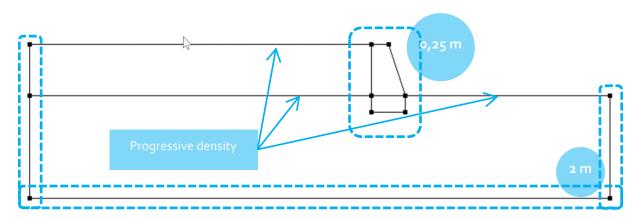



Figure 4: Final geometry

Bodies definition:

This step is facultative but it eases the recognition of bodies if more than one has been generated.

- 1. Click on **(1)**Body properties.
- 2. Right click on the area corresponding to the slope mass. Enter **Soil** as a name. **Apply**.
- 3. Repeat previous operation for other bodies.



2.3. 2D Meshing

Density definition:

Define dense divisions in the area of high strains, i.e. below the loaded foundation.

Use a progressive density definition to generate a progressive evolution from small segments to large segments on the boundary edges.

- 1. Go to the **MESH** tab on the project flow bar to start the definition of divisions along lines.
- 2. Select the contour of the gravity wall. Click on Fixed length division to impose a length for the divisions of this segment. Enter 0,25 m in the dialog box. Click on Apply.
- 3. Select the external contours of the model. Click on *fixed length division* to impose a length for the divisions of this segment. Enter **2** m in the dialog box. Click on *Apply*.

Click on n/p Variable division to divide the segment with a variation of lengths. Tick First/last division to define the method. Enter 0,25 m as First division and 2 m as Last division. Click on horizontals segment linking the wall with external borders.

The position of the click defines where the initial division is.

Surface meshing:

- Select the area corresponding to the Gravity wall, the Sand and the Backfill.
- Click on the *Surface meshing* tool . Chose **Quadratic** as interpolation type. Chose **Triangle** as element shape.
- Click on Apply to generate the mesh.

CESAR-LCPC proposes 3 levels for the surface meshing procedure, giving the possibility to generate a coarse or dense mesh. Adjust it in **Study settings >Preferences**: linear = coarse, cubic = dense.

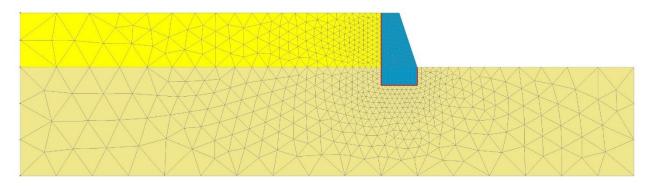


Figure 5: Example of mesh

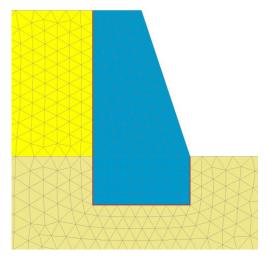


Figure 6: Zoom on the wall

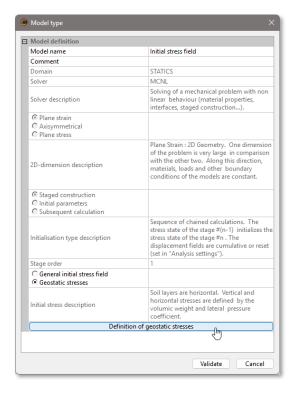
3. CALCULATIONS SETTINGS

3.1. Initial stress field

The staged construction process requires the definition of an initial stress field before applying loads. For this project, we follow the procedure defined in the document "Getting started with CESAR-LCPC", Chapter "Initial stress field".

As the soil is composed of horizontal layers, the initial stress field is initialized with the Ko procedure.

Model definition:


On the right side of the working window, the "Tree view" window displays the list of physical domains.

- 1. Right click on STATICS. Click on Add a model. A new toolbox is open for definition of the Model.
- 2. Enter Initial stress field as "Model name".
- 3. Select MCNL as "Solver".
- 4. Tick **Plane strain** as model configuration, with **Staged construction**.
- 5. Tick **Geostatic stresses** as initialization type. Click on *Definition of geostatic stresses*.
 - Click on *Insert* to define a new layer.
 - Enter the following values:

Height (m)	Volumic weight (MN/m ₃)	Ko_x (-)	Ko_z (-)
0	0,019	0,5	0,5

- Click on Validate.
- 6. Click on Validate.

The study tree is now as illustrated below.

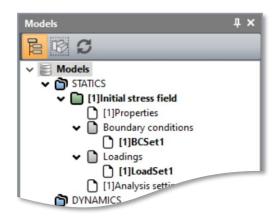
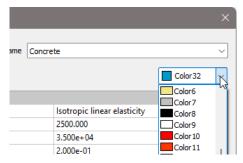


Figure 8: View of the study tree


Figure 7: Toolbox for definition of the model

Material properties for the solid bodies:

We initially define the material library of the study.

- Go to **PROPERTIES** tab
- Activate **Properties for surface bodies**. 2.
- Give a name for the properties set name ("Concrete" for example). 3.
 - In Elasticity parameters, select "Isotropic linear elasticity"
 - Input the values for ρ , E and ν .
- to create other properties set. Click on L 4
 - Give a name for the properties set name ("Sand" for example).
 - In **Elasticity parameters**, chose "Isotropic linear elasticity" and input ρ , E and ν .
 - In **Plasticity parameters**, chose "Mohr-Coulomb without hardening" and input c, ϕ
- Select a colour associated to each set of properties in the combo list. 5.

6. Click on Validate and Close.

Name of the body	Law of elasticity	Plasticity criterion	γ _h (kg/m³)	E (MPa)	ν	c' (MPa)	φ' (°)	ψ (°)
Wall	Isotropic linear	-	2500	35000	0,2	-	-	
Sand	Isotropic linear	Mohr-Coulomb	1900	50	0,3	0,005	36	0

Material properties for the interface bodies:

Properties of interfaces in CESAR-LCPC can be adherent, slipping or Coulomb's friction.

- Click on **Properties for interface bodies**. 1.
- 2. Give a name for the properties set name ("Friction" for example).
 - As Type, chose "Joint"
 - As **Definition type**, chose "Auto"
 - As Interface chose "Coulomb's friction", and define the interaction coefficient to the value of 0,445.
- Click on Validate and Close. 3.

"Auto", derived from the properties of the materials in contact.

Recommendations for the properties of joint bodies:

- Young modulus, Ei, is the 100 times the value of the less stiff of two neighbouring materials;
- Tensile strength, Rt, is the limit value of the tensile stress normal to the interface necessary to cause debonding. Thus; input of a high value of Rt prevents the debonding.
- Friction angle, φ , is pounded by the interaction coefficient.

Name of the body	Interface type	Ei (MPa)	Rt (MPa)	c' (MPa)	φ' (°)	ψ (°)
Friction	Coulomb's friction	5000	1	0	24	0

Assignment of data sets:

As data sets are created, we affect them to the bodies of the model.

- 1. Click on Assign properties tool. On the left side, the grid is updated.
- 2. Click on **Properties for surface bodies**.
 - Select the set of parameter "Sand"
 - Select the bodies of the soil mass, the backfill and the base of the wall.
 - Apply.
- 3. Click on **Properties for interface bodies**.
 - Select all the interface bodies and the set of parameters "Friction" in the list.
 - Apply.

Finally, to display the bodies according to the color of the associated property set, we activate the option on the selection bar.

Active/inactive bodies

- 1. Select the bodies above the soil mass at the initial state.
- 2. Click on Activate/deactivate bodies.
 - In the grid, tick "Inactive".
 - Apply.

The bodies are now marked with the neutral colour (grey is the default one).

Figure 9: Status of the model when bodies are set inactive at stage #1

Boundary conditions:

- 1. Activate the **BOUNDARY CONDITIONS** tab.
- 2. On the toolbar, activate to define side and bottom supports.
- 3. **Apply**.

Supports are automatically affected to the limits of the mesh.

Figure 10: Display of the boundary conditions

Default name of the boundary condition, BCSet1, set can be edited using the [F2] key.

Loading:

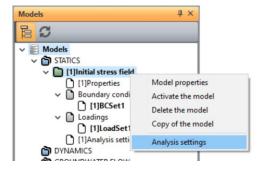
There is no load to be defined at this step of the analysis as we are initializing the initial stress field.

Analysis settings:

- 1. Activate the **ANALYSIS** tab.
- 2. Click on Options. Set the numbering option to "No renumbering".
- 3. Click on Analysis settings. In the General parameter section, enter the following values:
 - Iteration process:

Max number of increments: 1
Max number of iterations per increment: 1000
Tolerance: 0,01

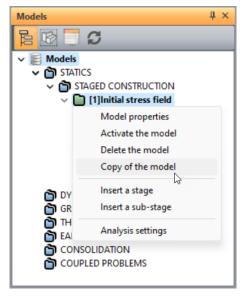
Algorithm type:


Solution method: 1-Method of initial stresses

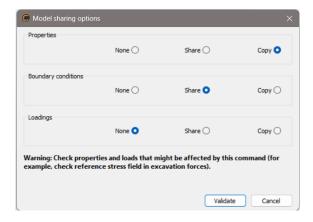
Algorithm type: Pardiso
Analysis type: Standard

4. **Validate** to close.

User can also use the STUDY tree to access these settings: right click on the calculation title. In the displayed list, select **Analysis settings**.



3.2. Stage #1, excavation for wall foundation


In this step, we remove the soil where the wall will be constructed.

Model definition:

1. In the STUDY tree, right click on the previous model *Initial stress field*. In the displayed list, select **Copy of the model**.

- 2. A toolbox is displayed for definition of this new model parameters.
 - Change the name of the model: : Stage #1.
 - Select "Staged construction". Default order is set to 2.
 - Validate.
 - 3. A new toolbox is now displayed for the edition of the action of copy/paste with the previous edited data: Properties, Boundary conditions and Loading sets.
 - Properties are copied,
 - Boundary conditions are shared (thus, all modification on this set will be automatically updated on models with such relation),
 - Loads are not copied.
 - Validate.

Active/inactive bodies

- 1. Select the body of the lower part of the wall.
- 2. Click on Activate/deactivate bodies.
 - In the grid, tick "Inactive".
 - Apply.

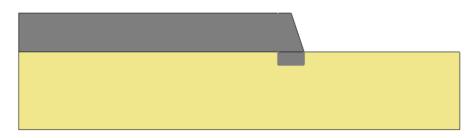


Figure 11: Status of the model when bodies are set inactive at stage #1

Boundary conditions:

No changes.

Loading:

- 1. Activate the *Loads* tab.
- 2. On the toolbar, activate **Excavation forces**. This feature is described in the user manual.
 - Activate the excavation forces,
 - Set the value of lambda to 1,
 - Select **Initial stress field** as stress field origin.
- 3. **Apply**.

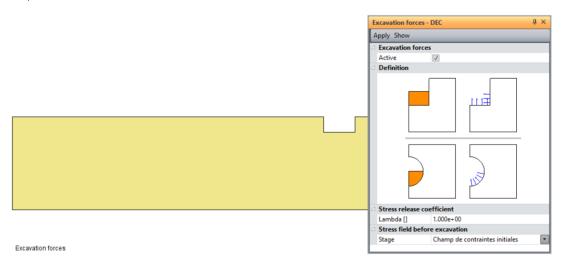


Figure 12: Display of the excavation forces

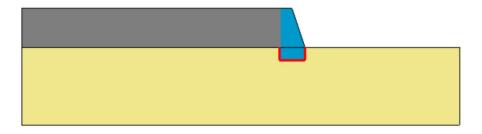
Analysis settings:

No changes.

3.3. Stage #2, wall construction

In this step, we activate the wall. To unbalance the model, the self-weight of the wall concrete is applied.

Model definition:


- 1. In the STUDY tree, right click on the previous model **Stage #1**. In the displayed list, select **Copy of the model**.
- 2. A toolbox is displayed for definition of this new model parameters.
 - Change the name of the model: **Stage #2**.
 - Select "Staged construction". Default order is set to 3.
 - Validate.
- 3. A new toolbox is now displayed for the edition of the action of copy/paste with the previous edited data: Properties, Boundary conditions and Loading sets.
 - Properties are copied,
 - Boundary conditions are shared,
 - Loads are not copied.
 - Validate.

The tree of models is now as illustrated below.

Active/inactive bodies

- 1. Activate the **PROPERTIES** tab.
- 2. Select the bodies of the **Wall**.
- 3. Click on Activate/deactivate bodies.
- 4. In the grid, tick "Active".
- 5. **Apply**. The bodies are now marked with their initial colour.

Interface properties

- 1. Activate the **Properties** tab.
- 2. Click on Assign properties tool.
- 3. Click on Properties for surface bodies.
 - Select the set of properties"Concrete"
 - Select the 2 surface bodies that model the wall.
 - Apply.

Boundary conditions:

There is no change in the boundary conditions.

Loading:

We assign the self-weight of the wall.

- 1. Activate the *Loads* tab.
- 2. On the toolbar, activate Gravity forces.
 - Click on **Automatic selection**. This feature detects the activated bodies.
 - Apply.

The gravity forces activation is mentioned as a label at the bottom left of the model window.

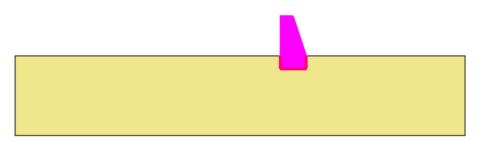
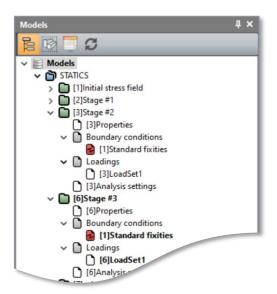


Figure 14: Gravity forces applied on the wall

Analysis settings:

There is no change in the analysis settings.



3.4. Stage #3, backfill works

Model definition:

- 1. In the STUDY tree, right click on the previous model **Stage #2**. In the displayed list, select **Copy of the model**.
- 2. A toolbox is displayed for definition of this new model parameters.
 - Change the name of the model: **Stage #3**.
 - Select "Staged construction". Default order is set to 4.
 - Validate.
- 3. A new toolbox is now displayed for the edition of the action of copy/paste with the previous edited data: Properties, Boundary conditions and Loading sets.
 - Properties are copied,
 - Boundary conditions are shared,
 - Loads are not copied.
 - Validate.

The tree of models is now as illustrated below.

Active/inactive bodies

- 1. Activate the **Properties** tab.
- 2. Select the first backfill layer behind the wall.
- 3. Click on Activate/deactivate bodies.
- 4. In the grid, tick "Active".
- 5. **Apply**. The body is now marked with its initial colour.

As we assigned the "Sand" properties set earlier to the backfill (at the stage "Initial stress field"), when activated the properties must be assigned. If not, select the surface body and assign the properties set..

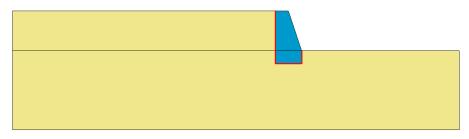


Figure 15: Status of the model when groups are set active at stage #3

Boundary conditions:

As we activate the sand layer, we fix the boundary on its limit.

- 1. Activate the **BOUNDARY CONDITIONS** tab.
- 2. On the toolbar, activate to define side and bottom supports.
- 3. **Apply**. Supports are automatically updated to the limits of the mesh, including the activated sand layer.

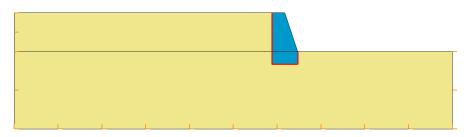


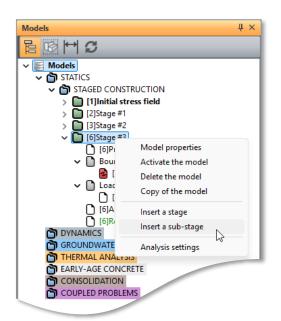
Figure 16: Status of the model when boundary conditions are updated at Stage #3

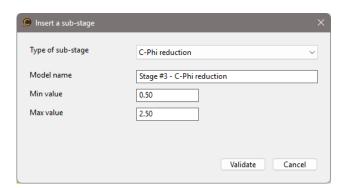
Loading:

- 1. Activate the *Loads* tab.
- 2. On the toolbar, activate Gravity forces.
 - Click on **Automatic selection**. This feature detects the groups activated in the actual stage (the sand body).
 - Apply.

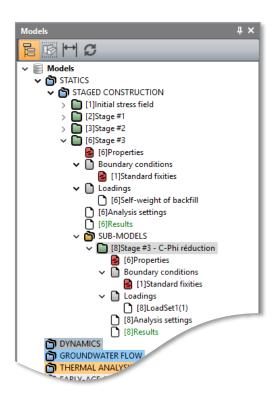
Analysis settings:

There is no change in the analysis settings.


3.5. C-phi reduction analysis

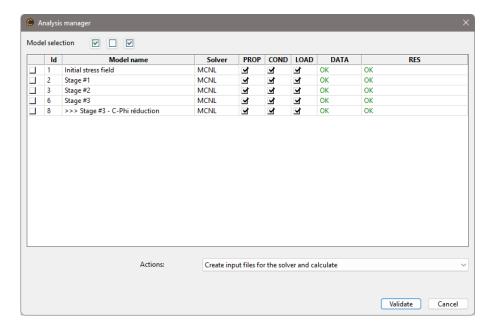

The c-phi reduction starts from the existing stress field state - the one calculated at Stage #3.

The edition of this analysis is resumed by the generation of a sub-staged of the Stage #3, with copy of the same properties and boundary conditions (no unbalancing loads).


Model definition:

- 1. In the study tree, right click on the previous model title (**Stage #3**). In the displayed list, select *Insert a sub-stage*. A new toolbox allows the definition of this mode:
 - Select "c-phi reduction" as Type of sub-stage
 - Edit, if necessary, the name of the model
 - Modify the interval of search [Min value = 0,5; Max value = 2,5]
 - Validate.

The date tree is now as illustrated below.



4. SOLVE

We launch the calculations simultaneously. It is obviously possible to launch the calculations one by one.

- Activate the **ANALYSIS** tab.
- Click on Analysis manager. 2.
- Select all the models. 3.
- Select Create input files for the solver and calculate. Click on Validate. 4.
- The iteration process is displayed on the Working window. It ends with the message "End of 5. analysis in EXEC mode".

riangle We detetect here if the models are ready for calculation. All steps (PROP, COND, CHAR) should be validated with a tick mark.

All the messages during the analysis will be shown on the working space. Especially, one needs to be very cautious about warning messages, because these messages indicate that the analysis results may not be correct.

5. RESULTS

The safety factor reached with the c-phi reduction analysis is 1,92. For comparison, if we chose "sliding" as behaviour of the interface, the safety factor is reduced to 1,7.

Typical results obtained at the end of the last phase are provided in the following figures.

- 1. Activate the **RESULTS** tab.
- 2. Click on Result Types
 - Select **Deformed** as Mesh,
 - Tick Contour plots, in the list select |u| (total displacements),
 - Click on Apply.
- 3. Click on Contour plots settings.
 - Tick Contouring, as isovalues style,
 - Tick Contour lines and select Grey color,
 - Apply.
- 4. Click on Displacement settings.
 - Select Manual as scale type,
 - Set that a value of 100 mm is represented by 2m,
 - Validate.

The figure below illustrates the rupture mechanisms at the front and at the back of the wall. The wedges are clearly identified with sliding interfaces.

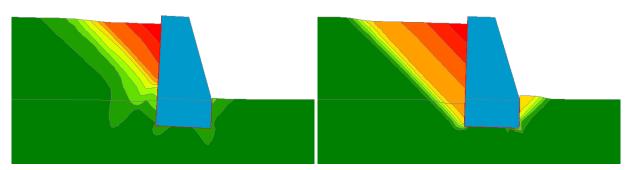
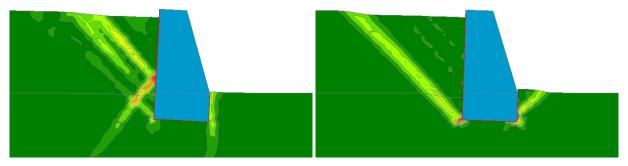


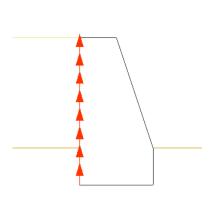
Figure 17: Total displacements |u| with friction (left) or sliding (right) interfaces.

In order to emphasis this rupture scheme, we display one of the plastic strains.

- 1. Click on Result Types
 - In the list of parameters select $|\varepsilon_1,t|$, total main strains.
 - Click on Apply.

Display of the scalar can be set inactive in some bodies (for example in the wall) using the tool . **Display results.




Figure 18: Display of total strains $|\varepsilon_1,t|$ with friction (left) or sliding (right) interfaces.

The wall rotation at the end of construction is derived from the horizontal displacement along the back of the wall.

To get this displacement, we generate a chart along a line cut. Line cut is defined following this procedure:

- Activate the CHARTS tab.
- 2. Select the edges at the extrados of the wall.
 - G-5
- 3. Click on **○** .Lines set.
 - Give a name to this line set, **Back** for example.
 - Add.
- 4. Activate Charts for a line set.
 - Select **u** as parameter,
 - Select Back as line set.
 - Tick "Increment_9"
 - Apply.

The line set is created. It is displayed on the mesh with arrows indicating the orientation. This orientation can be modified using *Inverse orientation.

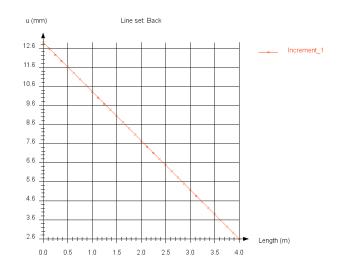


Figure 19: Plot of horizontal displacement at the back of the wall

Edited by:

8 quai Bir Hakeim

F-94410 SAINT-MAURICE

Tel.: +33 1 49 76 12 59

cesar-lcpc@itech-soft.com

www.cesar-lcpc.com

© itech - 2025