

Tutorial 2g.14 Stability analysis of a slope with water table

Ref: CESAR-TUT(2g.14)-v2021.0.1-EN

1. PREVIEW

This model is taken from Arai and Tagyo (1985), example#3, and it consists of a simple slope of homogeneous soil with pore pressure.

The pore pressure distributions are calculated by means of 2 different methods. The first one assumes hydrostatic conditions; the pore pressure at any point below the water table is calculated by measuring the vertical distance to the water table and multiplying by the unit weight of water. In the second method, the pore pressure field is calculated by steady-state analysis.

For both methods, there is zero pore pressure above the water table.

In this tutorial, the user will model the slope stability analysis (c-phi reduction process). Under the hydrogeological state, we will calculate the factor of safety of the slope, defined as follows:

c' = c/SRF

 $\varphi' = Arctan(tan\varphi/SRF)$

This factor is obtained when the finite element calculation reaches the latest converged solution, just before slope failure.

2. PROBLEM SPECIFICATIONS

General assumptions

- Plain-strain problem,
- Static analysis,
- Steady-state water table,
- Non-linear behaviour of the soil.

<u>Geometry</u>

Figure 1: Situation of the problem

Material properties

The constitutive model is a standard isotropic elasticity associated to the Mohr-Coulomb criterion.

	ρ (kg/m³)	E (MPa)	ν	c (kPa)	φ (°)	ψ (°)
Slope	1882	100	0,3	42	15	0

3. INPUTS FOR C/PHI REDUCTION ANALYSIS

3.1. General settings

- 1. Run CLEO₂D.
- 2. Set the units in the menu **Preferences > Units**.
- 3. In the tree, select the leaf **General/Length** and set the unit **m** in the bottom left combo box.
- 4. In the tree, select the leaf **Mechanic/Force** and set the unit **kN** in the bottom left combo box.
- 5. In the tree, select the leaf **Mechanic/Displacement** and set the unit **mm**.
- 6. Click on *Apply* to close.
- 7. In *Working plane*, set the visible grid to 1m (dX = dY = 2m)

Use "Save as default" to set this system of units as your user environment.

3.2. Geometry input

A new project always starts in the **GEOMETRY** tab.

Drawing of the geometry:

We first start with the drawing of the external limits of the slope.

- 1. Click on 🖍 . The *Points* dialog box is displayed.
- 2. Enter (o; o) as X and Y, and press *Apply*.
- 3. Tick "Linked points" to generate the segments between the points.
- 4. Enter (66 ; o), and press *Apply*. Segment A is created.
- 5. Enter (60; 35), and press *Apply*. Segment B is created.
- 6. Enter (48; 35), and press Apply. Segment C is created.
- 7. Enter (18; 15), and press *Apply*. Segment D is created.
- 8. Enter (o; 15), and press *Apply*. Segment E is created.
- 9. Enter (o; o), and press *Apply*. Segment F is created.

Figure 2: Geometry construction

Other methods could be used:

- 1. Define a grid of 1 m x 1 m and draw the lines with the mouse.
- 2. Use of "right click" to get information on an existing node and modify coordinates.

Bodies definition:

This step is facultative but it eases the recognition of bodies if more than one has been generated.

Right click on the area corresponding to the slope mass. Enter **Soil** as a name. **Apply**. 2.

User can display the body names on the geometry. This has to be set in Preferences > Geometry Display. Tick "Body label".

3.3. 2D Meshing

Density definition:

- Go to the **MESH** tab on the project flow bar to start the definition of divisions along lines. 1.
- Select all edges. Click on *Fixed length density*. to divide these segments with a fixed length. 2. Enter 2 m. in the dialog box. Click on Apply.

The software algorithm will adjust the length for the best fit with the input value of length.

Figure 3: Example of mesh density

Meshing:

- Select the areas corresponding to the layers. 1.
- Click on the *Surface meshing* tool . Chose **Quadratic** as interpolation type. Chose **Triangle** 2. as element shape.

3. Click on **Apply** to generate the mesh.

Figure 4: Example of mesh

CESAR-LCPC proposes 3 levels for the surface meshing procedure, giving the possibility to generate a coarse or dense mesh. The choice is made in *Preferences>Program settings*: linear interpolation = coarse, cubic interpolation = dense.

3.4. Calculation properties for steady-state analysis

Model definition:

- 1. On the right side of the working window, the "Tree view" window displays the list of physical domains.
- 2. Right click on GROUNDWATER FLOW. Click on *Add a model*. A new toolbox is open for definition of the Model.
- 3. Enter **Steady state** as "Model name".
- 4. Select **NSAT** as "Solver".
- 5. Tick **Plane problem** as model configuration.
- 6. Click on Validate.

Model definition				
Model name	Steady-state seepage (NSAT)			
Comment				
Domain	GROUNDWATER FLOW			
Solver	NSAT			
Solver description	Analysis of plane flow problem in an unsaturated porous media.			
Plane problem Axisymmetrical				
2D-dimension description	Plane : 2D Geometry .			
 Initial parameters Subsequent calculation 				
Initialisation type description	First calculation. No need of a previous calculation. Definition of initial stresses through various methods			

The date tree is now as illustrated below.

Material properties for the surface bodies:

We initially define the material library of the study in the **PROPERTIES** tab.

- 1. Click on **Properties of surface bodies**.
- 2. Give a name for the properties set name ("Slope" for example).
- 3. In **Flow parameters**, chose "Flow in porous media" and define K_X, K_y, K_{xy} and Ce. Note here that Ce (accumulation coefficient) is set to zero as we are analysing under steady-state condition.
- 4. Click on *Validate* and *Close*.

	Kx	Kx	Kx	Ce
	(m/sec)	(m/sec)	(m/sec)	(1/m)
Slope	10 ⁻⁵	10 ⁻⁵	0	0

Properties of surface bodies		х
[∔ ■ � ♥ €	Properties set name Slope	~
Flow parameters	Flow parameters	
	Туре	Flow in porous media
	K _x [m/sec]	1.000e-05
	Ky [m/sec]	1.000e-05
	K _{xy} [m/sec]	0.000e+00
	C _e [1/m]	0.000e+00

Figure 5: Toolbox for material library definition

Assignment of data sets:

As data sets are created, we affect them to the bodies of the model.

- 1. Click on **Assign properties** tool.
- 2. On the left side, a new window is displayed. Click on **Properties for surface bodies**.
- 3. Select the body of the slope on the model window and a set of parameters in the list.
- 4. Apply.

Properties	Ψ×
Apply Show Edit	
Definition	
Material name Slope(1)	•

Figure 6: Toolbox for properties assignment

Boundary conditions:

- 1. Go to the **BOUNDARY CONDITIONS** tab.
- 2. Activate **h** Constant water head. Set a value of 32 m on the left of the slope and a value of 15 m at the bottom of the slope (as illustrated in the figure below).
- 3. Facultative. It is possible to modify the default name assigned to the boundary conditions set. Press [F2]; enter **Water heads** for example.

Figure 7: Applied water heads

Analysis settings:

- 1. In ANALYSIS tab, activate Analysis settings
- 2. In the **Time steps** section, select the "Steady state".
- 3. In the **Subsequent calculation** section, enter the name of a file with ".rst" extension (we use here iniwtb.rst). This file will be used to initialise the hydrostatic field in the stability analysis model.
- 4. Other settings are set with their default values.
- 5. Close, **OK**.

Settings for the module N	NSA	т		×
Time steps Solution method Gravity direction Boundary conditions Loading sets Storage for subsequent calculi Storage for visualization of ret Content of the listing		Transient / Steady state C Transient Steady state General Number of time steps Start time value [sec] © Constant step	1 0.000000	
Settings for the module N	NSA	C Absolute values C By groups		×
Time steps Solution method Gravity direction Boundary conditions Loading sets Storage for subsequent calcul Storage for visualization of res Content of the listing		Storage Storage for subsequent calculation File used for storage	iniwtb.rst	

Figure 8: Toolbox for input of calculation parameters

3.5. Calculation properties for c/phi reduction analysis

Model definition:

- 1. On the right side of the working window, the "Tree view" window displays the list of physical domains.
- 2. Right click on STATICS. Click on *Add a model*. A new toolbox is open for definition of the Model.
- 3. Enter Slope stability under self-weight as "Model name".
- 4. Select **MCNL** as "Solver".
- 5. Tick **Plane strain** as model configuration, with **Initial parameters**.
- 6. Click on **Validate**.

- Model de	finition	
Model na	me	Slope stability under self-weight
Domain		STATICS
Solver		MCNL
Solver de	scription	Solving of a mechanical problem with non linear behaviour (material properties,
© Plane © Plane © Axisyr	strain stress nmetrical	
 Initial Subse Staged 	parameters quent calculation I construction	
Commen	t	

The date tree is now as illustrated below.

Material properties for the solid elements:

We initially define the material library of the study in the **PROPERTIES** tab.

- 1. Click on **Properties for 2D elements**.
- 2. Give a name for the properties set name ("Slope" for example).
- 3. In **Elasticity parameters**, chose "Isotropic linear elasticity" and define ρ , E and v.
- 4. In **Plasticity parameters**, chose "Mohr-Coulomb without hardening" and define c, φ and ψ .
- 5. Click on *Validate* and *Close*.

Properties of surface bodies			×
[]	Properties set name	Slope	~
Elasticity parameters	Elasticity parameters		
Plasticity parameters	Туре	Isotropic linear elasticity	•
	ρ [Kg/m3]	1882.000	_
	E [kN/m2]	1.000e+05	
	ν[]	3.000e-01	_
Properties of surface bodies			×
[] ■ � ♥ (Properties set name	Slope	~
Elasticity parameters	Properties set name	Slope	~
Elasticity parameters Plasticity parameters	Properties set name Plasticity parameters Type	Slope Mohr-Coulomb without hardening	~
Elasticity parameters Plasticity parameters	Properties set name Properties set name Plasticity parameters Type c [kN/m2]	Slope Mohr-Coulomb without hardening 42.000	~ •
Elasticity parameters Plasticity parameters	Properties set name Properties set name Plasticity parameters Type c [kN/m2] \$	Slope Mohr-Coulomb without hardening 42.000 15.000	•

Figure 9: Toolbox for material library definition

Assignment of data sets:

As data sets are created, we affect them to the bodies of the model.

Click on Assign properties tool.
 On the left side, a new window is displayed. Click on Properties of surface bodies.
 Select the body on the model window and a set of parameter in the list.
 Apply.

Figure 10: Toolbox for properties assignment

Boundary conditions:

- 1. Go to the **BOUNDARY CONDITIONS** tab.
- 2. On the toolbar, activate to define side and bottom supports. Supports are automatically affected to the limits of the mesh.
- 3. Facultative. It is possible to modify the default name assigned to the boundary conditions set. Press [F2]; enter **Standard supports** for example.

Figure 11: display of the boundary conditions

Load case:

We define here the hydrostatic field using the water head field calculated in the steady-state flow analysis.

- 1. Go to the *LOADS* tab.
- 2. Activate **WTB Isotropic.**
 - Select "File" as Water head input.
 - Define *iniwtb.rst* as initial water head file.
 - Validate.
- 3. In present version, in addition, user must define the dry and saturated weight of the bodies. Activate **WTB – Unit weight**.
 - Set 18.82 kN/m3 as unit weight,
 - Set 18.82 kN/m3 as saturated unit weight.
 - Select the body of the slope.
 - Apply.

'\	'WTB - isotropic pressure'-type stresses			×
V	alidate Delete			
Δ	Initial hydrostatic field			
	Water head input	File		•
	Water head read on file	iniwtb.rst		
Δ	Unit weight of water			
	Vol. weight [kN/m3]	10.000		
	Þ			

V	WTB - Unit weights				
A	Apply Show				
⊿	Unit weights of soils				
	Unit weight [kN/m3]	18.820			
	Saturated unit weight [kN/m3]	18.820			
Ľ	Saturated unit weight [kity/hi5]	10.020			

Figure 12: wtb definition using the steady-state water head field

Alternative for defining the WTB position and resulting stress field:

When the free surface line is known (height were p =o), user can input it.

- 1. Go to the *LOADS* tab.
- 2. Activate **WTB Isotropic**.
 - Select "Variable" as Water head input.
 - The WTB is defined by 5 points: (0; 15) , (18; 15), (30; 23), (48; 29), (66; 32).
 - Validate.
- In present version, in addition, user must define the dry and saturated weight of the bodies. Activate WTB – Unit weight.
 - Set 18.82 kN/m3 as unit weight,
 - Set 18.82 kN/m3 as saturated unit weight.
 - Select the body of the slope.
 - Apply.

Figure 13: Alternative for the WTB definition

Analysis settings:

- In ANALYSIS tab, activate Analysis settings 1.
- In the General parameter section, enter the following values: 2.

-	Iteration process:		
	Max number of increments:		1
	Max number of iterations per	r increment:	1000
	Tolerance:		0,001
-	Method of resolution:	1- initial stresses	5
-	Solver type:	Pardiso	
-	Analysis type:	c/phi reduction	
	Non-convergence detection	\checkmark	
	Minimum Value	0,01	
	Maximum Value	5	
	Precision	0,01	
-	Storage		
	Storage of total strains:	\checkmark	
	Storage of total strains:	\square	

Close, OK. 3.

E	Iteration process		
	Max number of increments	1	
	Max number of iterations per increment	500	
	Tolerance [] 0.001		
	Solution method and algorithm type		
	Solution method	1 - Method of initial stresses	•
	Algorithm type	Pardiso	-
	Analysis type		
	Analysis type	C-Phi reduction	-
	Detection of non convergence		
	Min value []	0.010	
	Max value []	5.000	
	Accuracy []	0.010	
	Storage		
	Storage of total strains		
	Storage of plastic strains		
L	- En la companya de l		
		Max number of increments Max number of iterations per increment Tolerance [] Solution method and algorithm type Solution method Algorithm type Analysis type Detection of non convergence Min value [] Max value [] Accuracy [] Storage Storage of total strains Storage of plastic strains	Max number of increments 1 Max number of iterations per increment 500 Tolerance [] 0.001 Solution method and algorithm type 50 Solution method 1 - Method of initial stresses Algorithm type Pardiso Analysis type C-Phi reduction Detection of non convergence Image: Comparison of the stresses Min value [] 0.010 Max value [] 0.010 Storage of total strains Image: Storage of plastic strains Storage of plastic strains Image: Storage of plastic strains

Figure 14: Toolbox for input of calculation parameters

4. SOLVE

- 1. Go to the **ANALYSIS** tab.
- 2. Click on Analysis manager.
- 3. Select the model "Slope stability under self-weight".
- 4. Select Create input files for the solver and calculate. Click on Validate.
- 5. The iteration process is displayed on the **Working window**. It ends with the message "End of analysis in EXEC mode".

🔎 Ana	alysis ma	nager						
Model	selectio	n 🔽 🗌 🗹	<u>A</u>					
	ld	Model name	Solver	PROP	COND	LOAD	DATA	RES
	4	Slope stability under self-weight	MCNL	4	4	4	OK	ОК
		Actions:	Create input	Create input files for the solver and calculate				~
							Validate	Cancel

△ CESAR-LCPC detects if the models are ready for calculation. All steps should be validated with a tick mark.

All the messages during the analysis will be shown in an **Output Window**. Especially, one needs to be very cautious about warning messages, because these messages indicate that the analysis results may not be correct. The result is saved as a binary file (*.RSV4) in the temporary folder (.../TMP/), defined during setup. The detailed analysis information is also saved in a text file (*.LIST).

5. RESULTS

5.1. Steady-state flow analysis

The main result is the water head field and the fere surface (where hydrostatic pressure = o).

Display of the water head field.

Figure 15: Display of the water head H

Display of the water head field.

Figure 16: Display of the free surface (p = 0)

5.2. Stability analysis

The main result is the safety factor. It is displayed:

- In the Output Window
- In the listing file.

The calculated safety factor is 1,11.

Display of the rupture mechanism in the slope.

The figure shows the classic "circular" rupture mechanism on the deformed mesh.

Figure 17: Plasticity and deformed mesh

Edited by :

8 quai Bir Hakeim F-94410 SAINT-MAURICE

Tél. : +33 1 49 76 12 59 cesar-lcpc@itech-soft.com www.cesar-lcpc.com

© itech - 2021