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This paper presents an approach developed to study the behavior of the masonry vaulted tunnels in order
to evaluate the serviceability state and failure load. An appropriate homogenization technique is used to
simulate the global anisotropic behavior across the vault. The model takes into account isotropic damage
in each component of the masonry and the variations of the directions of anisotropy in case of a vault. A
set of comparisons with experimental tests allowed the validation of the proposed approach. Failure
loads and deformation states are correctly assessed. The present model was programmed in the finite ele-
ment code CESAR-LCPC.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Masonry vaults are very common in numerous historical build-
ings, bridges and tunnels. The use of masonry for new construc-
tions declined considerably since the second half of the 20th
century, but these structures still exist and their maintenance
necessitates the study of their behavior. In particular, the objective
of this paper is to develop a model to study the behavior of the
masonry vaulted tunnels of the Paris metro, whose infrastructure
is mostly underground and was built predominantly in the early
20th century. Such structures can withstand displacements in the
order of few centimeters without reaching failure, and this is not
properly accounted for by numerical models (notably elastoplastic
models).

Masonry is a heterogeneous material made of elementary
blocks (bricks or stone blocks) and mortar joints. Its behavior has
been studied in numerous scientific publications (see for instance
the survey provided by [3]). Before the 20th century, the calcula-
tion methods developed for masonry vaults were focused on the
evaluation of their bearing capacity [5], on the basis of graphic
analysis of the static equilibrium of the structure. More recently,
masonry vaults have been analyzed by means of limit analysis
[14,15,23] and of the yield design theory [38,10]. However, such
stability analyses do not allow to compute the deformation of
the structure when the applied load brings it close to failure.

The development of modern displacement computation
approaches and numerical methods permits to evaluate the defor-
mation of any structure under complex conditions, in all stages of
an incremental loading. Among the different numerical techniques
to model masonry structures [37], the finite element method is fre-
quently used. It is especially adapted to discuss the interaction
between the masonry vault of a tunnel and the surrounding
ground, which generally exhibits a complex behavior that can be
conveniently taken into account in the framework of the finite ele-
ment method. Three modeling strategies can be distinguished for
masonry structures [24]:

(1) detailed micro-modeling: each component of the masonry,
i.e. blocks, joints and interfaces are modeled separately, with
a constitutive law for each component;

(2) simplified micro-modeling, where the blocks are geometri-
cally expanded to account for mortar, while the mortar
behavior is reflected in the interface constitutive law;
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(3) macro-modeling, in which all components of the masonry
are represented as a continuous homogeneous medium
and ‘‘equivalent” to the masonry.

Given the computational effort required and the large number
of necessary experimental data, the first two approaches are
reserved for small masonry structures and for situations in which
the local heterogeneities of the stress field are investigated. The
macro-modeling is suitable for large structures. Several examples
of these three approaches can be found in [3,37].

The objective in our study is to develop a model for masonry
vaults. To this end, a macro-modeling approach was adopted using
a homogenization technique proposed by [45] to transform the
masonry into an equivalent continuummedium. Then, an isotropic
damage model is used to represent the nonlinear behavior of the
masonry components, which describes the degradation of the
material as a stiffness reduction before the macroscopic failure
[33]. Variations of the directions of the block-mortar bond in the
vault are also taken into account.

Damage models have been used by several authors to study
masonry structures under various loading conditions: walls under
seismic loads [7,28,34,41,43]; walls under a point shear load
[1,2,6,42,46]; walls under in-plane vertical or horizontal loads
[13,27,29,36,40,44,45,48]; vaults under different loads [8,35,39];
and bridges [11,12]; among others. Most of the studies on masonry
using damage models consider a wall subjected to in-plane loads or
earthquake motions; the case of vaults (bridge or buried arches) is
not commonly discussed. Oldmasonry tunnels are evenmore rarely
studied: the analysis of buried masonry vaults is the focus of our
study.

The model for masonry vaults was programmed in the finite
element code CESAR-LCPC [17] a software package dedicated to
civil engineering and geotechnical engineering applications, devel-
oped since the 1980s by the French Institute of science and tech-
nology for transport, development and networks (IFSTTAR).

In this paper we present the numerical implementation
of a homogenized masonry model, followed by a set of compar-
isons with experimental tests which validates of the proposed
approach.
Fig. 1. Basic cell of a masonry wall [47].

(a) Six elementary loading cases

Fig. 2. Quarter basic cell in the masonry of t
2. Homogenization-damage model for masonry

2.1. Masonry homogenization

The process of homogenization consists in replacing a heteroge-
neous medium by an equivalent homogeneous one. In the case of
masonry, the very regular geometrical pattern of bricks or blocks
and mortar joints makes it possible to assume that the heteroge-
neous masonry material is comparable to a composite one with a
periodic microstructure. Such a medium is defined by a ‘‘basic cell”
whose graphic repetition represents the whole structure (Fig. 1).

The geometry of the basic cell and the behavior of its compo-
nents, i.e. blocks and joints, are used to derive the constitutive
law of the homogenized continuum. This procedure is referred as
a micro-mechanical model for the homogenization of masonry by
[47], and gives the homogenized macroscopic stiffness matrix H

that connects the macroscopic stresses R0 to the macroscopic
strains E0 in the basic cell. This matrix is then used to compute
forces and displacements in the structure.

A state of the art on the homogenization techniques for
masonry can be found in [25]. Homogenization can be carried
out by numerical or analytical means. In this paper a simplified
analytical approach was used.
2.2. Nonlinear homogenization

Among the homogenization techniques, the analytical engi-
neering approach proposed by [47] for the masonry was chosen.
This technique aims to replace the complex behavior of the basic
cell with a simplified one. Initially developed for the elastic range,
the approach was extended to the nonlinear range in [45,48,46] for
various loading situations. This technique will be referred as the
model of Zucchini and Lourenço in the following.

The approach is based on the superposition principle. The elas-
tic response to the basic cell subjected to a uniform macroscopic
stress state is determined by studying separately six basic loading
conditions: three cases of normal loading and three cases of pure
shear loading, along the axes of the local coordinate system (LCS)
(Fig. 2a). For each load case, the value of one component of the
macroscopic stress tensor is imposed to the basic cell, the other
components being zero.

Because of symmetry conditions, only one quarter of the basic
cell is studied. It is divided into four components: in one hand
the blocks, and in the other hand, the mortar joints, with the hor-
izontal, vertical and cross joints (Fig. 2b).

By introducing the equilibrium between micro and macro
forces in the basic cell boundaries and interfaces, the compatibility
of the deformation of the components and using Hooke’s law,
together with other simplifying assumptions, a system of equa-
(b) Components of the basic cell 

he model of Zucchini and Lourenço [47].
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tions for each load case is introduced, which allows to compute the
stresses and strains in each component, under a given macroscopic
stress field.

In the nonlinear range, the model associates a scalar damage
variable to each component of the basic cell (i.e. joints and blocks).
The problem is treated in an incremental way: under increasing
load, the homogenization technique must account for the damage
in each component, and consequently update the internal stresses
and elastic parameters. Damage is evaluated using a simple Rank-
ine criterion (i.e. only the maximum principal stress is compared to
the tensile strength).

The great interest of this approach lies in the fact that the non-
linear anisotropic constitutive law of the masonry is obtained by
solving a set of algebraic equations, and it is not necessary to solve
an auxiliary boundary problem on the basic cell by means of a
finite element simulation.

A damage coefficient rk = (1 � dk) is introduced for each compo-
nent stress, where d is the damage variable, k = 1, 2, 3 and B,
respectively for the horizontal, vertical, and cross joint, and block
(Fig. 2b). The variable d is evaluated with the model presented in
Section 3.1.

A system of equations is written in terms of effective stresses
for the case of the quarter cell subjected to a normal macroscopic
stress r0

ii (Fig. 2a). For instance, equilibrium at the right boundary
leads to:

lrBrB
hh þ tr2r2

hh ¼ ðlþ tÞr0
hh ð1Þ

Superscripts 1, 2, 3 and B, indicate the component, respectively the
horizontal, vertical, and cross joint, and block. The superscript 0
represents homogenized cell variables. The subscripts b, h, and n
represents the local coordinate system (LCS) of the basic cell
(Fig. 2b). See [47,45] for the full set of the equations.

The system of equations can be expressed as:

Aa
ijrj ¼ r0

i ð2Þ

where r ¼ fr1
bb;r2

bb;rB
bb;r1

hh;r2
hh;rB

hh;r1
nn;r2

nn;rB
nng

T represents the

internal stresses in the basic cell, r0 ¼ f0; 0;r0
bb;r0

hh;r0
nn;0;0;0;0g

T

a vector containing the macroscopic stresses and Aa a matrix that
contains the geometrical and mechanical properties of the compo-
nents. In the proposed approach, it is assumed that the horizontal
stresses varies linearly inside the block, and rB

bb denotes the average
value in the block.

Macroscopic strains are calculated once the system of Eq. (2) is
solved. Finally, Young’s moduli and Poisson’s ratios are calculated
from homogenized strains and stresses. For example, in the direc-
tion b, boundary imposed conditions to the basic cell
r0

bb–0; r0
hh ¼ r0

nn ¼ 0, lead to:

Eb ¼ r0
bb

e0bb
mbh ¼ � e0hh

e0bb
ð3Þ

Each case of shear stress forms a separated system of equations.
Once all the elastic parameters are known, it is possible to compute
the macroscopic homogenized stiffness matrix H.

3. Improved model for masonry vaults

The following modifications of the Zucchini & Lourenço model
are proposed:

– the isotropic damage model used to characterize the nonlinear
behavior of each component in the masonry is different from
the model initially proposed;

– the model takes into account variations of the directions of the
block-mortar bond in the vault;
– a regularization technique is adopted to reduce the dependence
of the solution regarding the finite element mesh, in the numer-
ical modeling of the softening law.

3.1. Isotropic damage model for the components

The model of Zucchini and Lourenço uses a simple Rankine
damage criterion to study the behavior in traction [45] and an
elastoplastic model in compression [48], in each component of
the masonry. Instead of this complex model, we used a single iso-
tropic damage model.

The state of damage for isotropic models [22] is controlled by a
scalar variable d that ranges from 0 to 1, 0 representing the undam-
aged material and 1 corresponding to fracture, such that the dam-
aged modulus is given by Ed = E0 (1 � d), where E0 is the elastic
modulus without damage. A modified version of the Mazars model
[30] for concrete proposed by [9] is used. This model considers an
equivalent strain ~e at each material point, which depends on the
three-dimensional state of strain:

~e ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he1i2þ þ he2i2þ þ he3i2þ

q
ð4Þ

where ei (i = 1, 2, 3) represent the principal strains, heiiþ ¼ ei if
ei P 0; or 0 if not. In Eq. (4) the coefficient c is defined by the follow-
ing expression:

c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�r1i2� þ h�r2i2� þ h�r3i2�

q
h�r1i2� þ h�r2i2� þ h�r3i2�

ð5Þ

where �ri represents the principal effective stress in the direction i;
and hrii� is the negative part of the principal effective stress:
hrii� ¼ ri if ri 6 0; or 0 if not. The value of c is bounded between
0 and 1 and calculated only when at least a one principal effective
stress is negative, i.e. in compression.

The damage variable evolves if the equivalent strain ~e reaches a
threshold value eD0. Following [30], this threshold is the strain at
the maximum stress in a uniaxial direct tension test. Assuming
that the behavior is linear up to the maximum tensile stress we
can write eD0 = ft/E0, where ft is the tensile strength. The damage
criterion is then written:

F ¼ ~e� ~eM 6 0 ð6Þ
where ~eM is the actual threshold, equal to the initial threshold eD0 if
it has never been reached, or the maximum value reached by ~e
otherwise. The damage variable d is a linear combination of two
damage variables [30], dt and dc, associated respectively to the ten-
sile and compression stresses:

d ¼ atdt þ acdc ð7Þ
In the absence of traction at = 0, in the absence of compression
ac = 0, and in all cases at + ac = 1, see [30] for a detailed definition
of at and ac. The evolution laws of the two variables of damage
are:

dc ¼ 1� eD0ð1� AcÞ
~eM

� Ac

exp½Bcð~eM � eD0Þ�
dt ¼ 1� eD0

~eM
exp �Btð~eM � eD0Þ½ �

ð8Þ

where Ac and Bc are parameters obtained experimentally from the
stress-strain curves of a compression test. The equation for dt in
(8) is a modified expression, from that of [30], proposed by [20]
as a regularization technique in traction, to avoid the well-known
excessive mesh sensitivity problems in the finite element modeling
of the softening behavior of the damage law, see [33]. The parame-
ter Bt depends on the characteristic length lc, the mode I fracture
energy Gft, and the tensile strength of the material ft:
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Bt ¼ lcf t
Gft

ð9Þ

where lc ¼
ffiffiffi
S

p
, and S is the area (or volume) of the finite element to

which the integration point belongs. The mode I fracture energy is
assumed to be a material property. This is another difference with
respect to the model of Zucchini and Lourenço, in which the charac-
teristic length is taken equal to the component dimension perpen-
dicular to the crack direction, producing high mesh-sensitivity
because lc is a constant quantity. Introducing damage in each homo-
geneous isotropic component makes it possible to reproduce
implicitly the global anisotropic damage behavior of the masonry.

3.2. Strain driven problem

For the coupling of the numerical homogenization procedure
with damage, it is convenient to evaluate the stresses and strains
in the basic cell by imposing a macroscopic incremental strain field
instead of a stress field.

When studying traction parallel to the bed joint of the masonry,
the model of Zucchini and Lourenço imposes to the basic cell a
macroscopic horizontal strain and null macroscopic stress in the
other directions [45]; when studying compression, a macroscopic
vertical strain and null macroscopic stress in the other directions
[48]. In our study a uniform strain field is imposed, instead of these
mixed boundary conditions.

In practice, we decompose the macroscopic strain tensor into
two contributions: one due to the normal strain and other due to
shear strain. Two auxiliary problems on the basic cell must be
solved. The damage in each component depends on the sum of
the stresses in the given component obtained for each auxiliary
problem. This approach was adopted by [46]. In our study, we
adopt the following simplifying assumption: damage in compo-
nents is caused only by the macroscopic strains e0bb, e0hh, e0nn
Fig. 3. Strain field applied to the quarter basic cell.

(a) Definition of the coordinate systems

Fig. 4. Geometry of the mas
(Fig. 3), the strain e0bh, considered small compared to strains e0ii , is
neglected. With this assumption, a single auxiliary problem must
be solved to compute internal stresses and strains of each compo-
nent within the basic cell.

Thus the system of Eq. (2) becomes:

Ab
ijrj ¼ e0i ð10Þ

where r ¼ fr1
bb;r2

bb;rB
bb;r1

hh;r2
hh;rB

hh;r1
nn;r2

nn;rB
nng

T represents the

internal stresses, e0 ¼ f0; 0; e0bb; e0hh; e0nn; 0;0;0; 0g
T a vector contain-

ing the macroscopic strains and Ab a matrix that contains the geo-
metrical and mechanical properties of the components. A
complete presentation of the system of equations can be found in
[32].

3.3. Homogenized damaged parameters

For a given macroscopic strain field, stresses r in the compo-
nents are obtained after resolution of the system (10), and then
the damage coefficients rk = (1 � dk) are calculated for each compo-
nent using the model of Section 3.1.

Given the fact that a strain field is imposed to the basic cell, it is
difficult to evaluate the Poisson’s ratios. It is proposed here to solve
firstly the system (10) that gives the damage coefficient rk. Sec-
ondly, the coefficients rk previously obtained are injected into the
system of equations where an arbitrary macroscopic stress
r0

ij ¼ 1 Pa is imposed with different boundary conditions, to finally
calculate the damaged elastic moduli and the Poisson’s ratios.

3.4. Geometrical considerations for the vault

The model defined in the previous paragraphs was presented
with respect to the directions of the basic cell, denoted b, h and
n. For a wall, the orientation of the local axes is constant. In a
masonry vault (Fig. 4a), the orientation of the block-mortar bond
varies and it is necessary to take it into account with two coordi-
nate systems: the global coordinate system (GCS) in which the
finite element mesh is constructed and the local coordinate system
(LCS) which follows the orthotropic directions of the masonry
(Fig. 4). The directions b and h are in the plane while the direction
n is out of the plane.

The vault geometry is defined by the intrados and the extrados,
both of elliptical shape, making it possible to take into account a
wide variety of geometries. A fictitious ‘‘mean ellipse” is defined
in the vault, midway between the intrados and the extrados, cen-
tered in C, with semi-axes a and b (Fig. 4b). Each point M (xM,yM)
of the vault is associated with its projection onto the mean ellipse,
denoted by N(xN,yN), and the local masonry directions b and h are
taken normal and tangent to the mean ellipse. We introduce the
angle h that defines the position of the point M with respect to
(b) Normal projection of theM point into the mean ellipse 

onry vault of a tunnel.



Box 1. Global iterative algorithm for masonry vaults.

(i) Compute incremental macroscopic stresses and strains

in each integration point with ðHdÞm�1.

(ii) Compute damage coefficients in basic cell, see Box 2.

(iii) Check global criterion FG > 0?, Eq. (22).

YES: damage loading. Proceed to (iv).

NO: no further damage. Exit.

(iv) Compute local damaged stiffness matrix ðCdÞm, Eq.

(18).

(v) Compute damage tensor D for display only, Eq. (17).

(vi) Update global stiffness matrix ðHdÞm, Eq. (19).
(vii) Update macroscopic stresses R0

i , Eq. (21).
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the horizontal axis and the normal projection to the mean ellipse
(Fig. 4b).

The coordinates of the point N (xN,yN) are given by

xN ¼ xM 1� 2k
a2

� �

yN ¼ yM 1� 2k

b2

� �

where

k ¼
x2M
a2 þ

y2M
b2

� 1
4x2

M
a4 þ 4y2

M

b4

ð11Þ

and the angle h is defined by:

h ¼ arctan
yNa

2

xNb
2

 !
ð12Þ

The angle h is positive counterclockwise. For h = 90� the point is at
the keystone of the vault.

The strain field applied to the basic cell in Section 3.2 has to be
expressed in the LCS. In a 2D study, the transition from the GCS to
the LCS (Fig. 4) is carried out by performing the following
operation:

e0i ¼ QijE
0
j ð13Þ

where E0 is the macroscopic strain vector in the GCS and e0 the
macroscopic strain vector in the LCS. The matrix Q is given by:

Q ¼
cos2 h sin2 h 2 cos h sin h

sin2 h cos2 h �2 cos h sin h

� sin h cos h sin h cos h cos2 h� sin2 h

2
64

3
75 ð14Þ

where h is computed with Eq. (12).

3.5. Damage tensor

The orthotropic damaged stiffness matrix Cd (see Eq. (18)
below) is given implicitly by homogenization-damage technique
without the formulation of a damage tensor variable. To display
the state of damage of the vault, it is interesting to calculate an
orthotropic damage tensor, using the strain equivalence principle
[21]. We can write:

Dij ¼ Iij � ðM�1Þij ð15Þ
where I is the identity second order tensor; M is a second order ten-
sor called effective damage tensor according to [33], which trans-
forms the stress tensor r into effective stress tensor r and is
expressed as

Mij ¼ C0
ikS

d
kj ð16Þ

C0
ik is the undamaged stiffness matrix in the LCS and Sdij ¼ ½ðCdÞ�1�ij.

This produces an asymmetrical second order tensor D:

D ¼

D11 D12 D13 0 0 0
D21 D22 D23 0 0 0
D31 D32 D33 0 0 0
0 0 0 D44 0 0
0 0 0 0 D55 0
0 0 0 0 0 D66

2
66666664

3
77777775

LCS

ð17Þ

The tensor D expresses damage in the LCS (Fig. 4). Thus, for example
D11 can be seen as the degradation of the module Eb and D22 as
degradation of Eh. The evaluation of the anisotropic damage tensor
is not needed to carry out the calculations, but provides the possi-
bility to represent graphically the anisotropic damage state in the
vault given by the model.

4. Numerical implementation

In our study, we propose to apply the homogenization-damage
technique to each integration point of the finite element mesh in
order to compute forces and displacements in the structure.

4.1. Global iterative resolution procedure

In the finite element analysis of damage problems, an elastic
solution is computed first, with the initial value of the stiffness.
At a local level, the strains induce a modification of the damage
parameters (see Section 4.2), and of the stiffness of the material:
the stress state must be updated to account for this stiffness reduc-
tion, which produces out-of-balance nodal forces. The procedure
follows a classical Newton-Raphson iterative scheme.

More precisely, once the homogenized macroscopic parameters

are obtained at the local level, the damaged stiffness matrix Cd is
updated in the LCS (see Fig. 4). In plane stress we have:

Cd ¼
Eb

1�mbhmhb
Ebmhb

1�mbhmhb 0
Ehmbh

1�mbhmhb
Eh

1�mbhmhb 0

0 0 Gbh

2
664

3
775

LCS

ð18Þ

Then the damaged stiffness matrix Hd in the GCS is computed:

Hd
kl ¼ TkiC

d
ijPlj ð19Þ

where T and P are transformation matrices:

T ¼
cos2h sin2h sin h cos h
sin2h cos2h � sin h cos h

�2 sin h cos h 2 sin h cos h cos2h� sin2h

2
64

3
75

P ¼
cos2h sin2h �2 cos h sin h

sin2h cos2h 2 cos h sin h

sin h cos h � sin h cos h cos2h� sin2h

2
64

3
75

ð20Þ

Angle h is computed with equation (12). Finally, the update of the
macroscopic stresses R0 is carried out:

R0
i ¼ Hd

ijE
0
j ð21Þ

The numerical scheme is summarized in Box 1, where m repre-
sents the global iteration. The global damage criterion FG adopted
here is:

FG ¼ max½Fk
c � ð22Þ

where Fk
c represents the damage criterion of each component given

by Eq. (6).



Table 1
Properties of the prisms tested in compression.[31]

Prism Blocks dimensions (mm) Mortar
thickness (mm)

Prism
size (mm)

Length Height Depth

Unit 1 200 57 98 9.5 200 � 323
Unit 2 194 55 89 9.5 200 � 323

Box 2. Local iterative algorithm in the basic cell.

For each integration point:

(i) Compute local macroscopic strains, Eq. (13)

(ii) Compute stresses and strains in all components with

ðrkÞn�1, Eq. (10)

(iii) For each component:

Compute equivalent strain, Eq. (4)

Check damage criterion Fk
c>0 ? Eq. (6)

YES: damage loading. Proceed to (iv)

NO: no further damage. Exit

(iv) Update damage coefficients ðrkÞn
(v) Convergence? Eq. (23)

YES: Proceed to (vi)

NO: Proceed to (ii)

(vi) Update damaged homogenized parameters, see

Section 3.3
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4.2. Local iterative resolution procedure

Since the stresses and strains in each component depend on the
damage coefficient rk = (1 � dk) and the damage variable dk

depends on the strain state in each component, a local iterative
process is necessary to compute rk. It is performed at the basic cell
level: for each strain increment e0ii , the system (10) is solved to
obtain the unknown internal stresses and strains in the cell compo-
nents (k = 1, 2, 3, and B), using the damage coefficients of the pre-
vious iteration. Damaged coefficients are then updated using the
model of Section 3.1, from the new stresses and strains. The pro-
cess is iterated until convergence of the coefficients rk. It is consid-
ered that convergence is achieved when:

pmax < g with pmax ¼ max½pk�;

and pk ¼ 1� minðrkn�1; r
k
nÞ

maxðrkn�1; rknÞ
ð23Þ

where n is the actual iteration in the basic cell and g is the tolerance
taken equal to 10�3. The procedure is summarized in Box 2.
Table 2
Comparison between the measured compressive strength [31] and numerical
predictions (MPa).

Prism Experimental Model Zucchini and Lourenço [48]

U1M 48.2 47.3 46.9
U2M 37.7 33.3 40.2

Table 3
Comparison between the measured tensile strength [4] and numerical predictions
(MPa).

Prism Experimental Model

KS12-MG II 0.17 0.19
HLz12-MG III 0.22 0.21

(a) Vault without fill

Fig. 5. Geometry of masonry arches sem
5. Validation

The model presented above makes it possible to account for the
strength and geometry of the mortar joints in the vault, since the
homogenization technique is performed at each step of the loading
process. It is possible to compare homogenized numerical results,
with experimental results provided that the results are analyzed
at the appropriate scale (many authors have adopted this approach
to validate numerical homogenized models for masonry:
[27,29,36,42,46,48], among others).

The approach presented in the preceding paragraphs was
applied to some experimental studies for validation purpose.
5.1. Elementary validations

We considered existing experimental studies in the literature to
verify that the expected behavior is correctly reproduced. All FEM
calculations were carried out in plane stress conditions.
5.1.1. Compression strength
Tests on the compressive strength of masonry prisms by [31]

are used to validate the numerical model. Two types of blocks were
tested. The properties of the materials are presented in Appendix A.
The geometric parameters are showed in Table 1. The vertical dis-
placement is set to zero on the lower boundary, and a vertical dis-
placement is imposed on the upper boundary. Finite element size
is about 5 cm.
(b) Buried vault

icircular studied by [19] (in mm).
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Fig. 6. Force-displacement curves for the vault without filling: experiment [19] and
numerical modeling.

Table 4
Comparison between experimental measurements [19] and numerical predictions for
the vault without fill.

Fmax (kN) ur (mm)

Experimental [19] 4.10 0.43
Model 3.86 0.69

1 For interpretation of color in Fig. 7, the reader is referred to the web version of
is article.
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Results are showed in Table 2. Good agreement is observed for
Unit 1 test with a �1.9% deviation, whereas a less accurate numer-
ical result is obtained for Unit 2 test with a �11.7% deviation. A
comparison with the numerical results by [48] for the same tests
is also presented, these show �2.7% and 6.6% deviations
respectively.

5.1.2. Tensile strength
Experimental tests on the tensile strength of masonry are scarce

in the literature. We studied the tests performed by [4] on a series
of walls using different types of masonry mortar and bricks, with
different combinations of strength. Brick dimensions are 240 mm
length, 115 mm depth and 113 mm height, with a 10 mm thick-
ness of mortar joints. The specimen for testing is 490 � 482 mm.
We considered the results of the KS12 and HLz12 brick types and
MGII and MGIII mortars. The properties of the materials are pre-
sented in Appendix A.

The principle of the test is to apply a direct tensile stress parallel
to the bed joints with two metal beams glued to the wall (see
[4,26] for further details). The rectangular prisms were modeled
with a horizontal displacement set to zero on the left boundary,
and a horizontal displacement imposed on the right boundary.
Finite element size is about 5 cm. The results show a good agree-
ment with experimental results (Table 3).

5.2. Validation in the case of a masonry vault

Eventually, the model is used to simulate experimental tests
performed by [19] on semi-circular masonry vaults. Two particular
cases are studied here (Fig. 5): the first one is a simple vault sub-
jected to a point load, and the second one, a buried vault with a
point load applied on the surface.

The vaults had two reinforced concrete supports connected
with two steel rods with a diameter of 20 mm, in order to avoid
horizontal movements of the supports. For the buried vaults, con-
crete walls were built to retain the filling, connected by two steel
beams to prevent horizontal displacements and rotations of the
walls. The vault geometry is showed in Fig. 5. The bricks length,
width and thickness are 250 mm, 125 mm and 65 mm, respec-
tively. The thickness of the mortar joints was 13 mm. The proper-
ties of the materials are presented in Appendix A.

A set of LVDT sensors are placed in the vault intrados. Focus was
taken only on the sensor positioned just below the load (point A,
Fig. 5a). The mean ellipse (see Section 3.4) is defined by
a = b = 111.25 cm for both cases.

5.2.1. Modeling of the vault without fill
The numerical calculations were carried out in plane strain con-

ditions. The applied boundary conditions in the vault are zero ver-
tical and horizontal displacements in the supports. To deal with the
softening behavior of the vault and avoid numerical instabilities,
the structure is associated in the simulation with a fictitious spring
placed at the point of application of the load. As damage evolves in
the vault, the spring takes the difference between the external
applied force and the force born by the vault.

The modeling results are shown in Fig. 6 and Table 4, where ur is
the radial displacement of the vault at point A (Fig. 5a). The angles
in the numerical curve correspond to the formation of hinges in the
loading process (Fig. 7). In the experimental results, the maximum
load is reached for a small displacement, whereas in the calcula-
tions deformation is a little higher when maximum load is reached.
However, from a qualitative point of view the model produces sat-
isfactory results.

In Fig. 7, the experimental and numerical failure mechanism of
the vault are shown; notably, the four-hinge failure mechanism
obtained experimentally (red1 dots in Fig. 7a) is correctly repro-
duced by the model. The hinges are identified in the numerical
results as completely damaged zones where an abrupt change in
the slope of the deformed shape takes place. The deviation between
the simulation and the experiment can be attributed to numerous
factors, notably the uncertainties on the details of the experimental
setup (the type of contact between the vault and the support for
instance).

5.2.2. Modeling of the buried vault
The applied boundary conditions at the supports are zero verti-

cal and horizontal displacements. Regarding the retaining walls of
the fill (Fig. 5), we considered that there are no horizontal displace-
ments of the walls, although a minor horizontal displacement of
the upper edge of around 0.8 mm was measured. An elastoplastic
model with a Drucker-Prager criterion was used for the filling,
made of expanded clay, using the values given in Appendix A.
Property values for masonry materials are also presented in
Appendix A. The calculation was conducted in plane strain condi-
tions in two steps: (1) application of the weight of the filling and
vault and (2) application of the load in 100 increments.

The modeling results are shown in Fig. 8 and Table 5. The failure
load is predicted with a good precision, however, the radial dis-
placement ur of point A (see Fig. 5b), is a little less accurate.
Fig. 9 shows that the model satisfactorily reproduces the four-
hinge failure mechanism. Damage variable D22 is shown to repre-
sent the damage state of the vault (see Section 3.5). As for the
non-buried vault, the hinges are identified in the numerical results
as completely damaged zones where an abrupt change in the slope
of the deformed shape takes place.

The small differences between experimental and numerical
results showed in Figs. 8 and 9, may be due to the behavior of
the fill and its interaction with the vault. The mechanical proper-
ties of the fill material have an influence on the way the applied
th



(a) Experimental [19], referred as specimen S02 (b) Numerical, damage variable D22
(D=1 complete damage; D=0 no damage)

Fig. 7. Failure mechanism of the vault without filling: comparison of experiment and modeling.
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Fig. 8. Force-displacement curves for the buried vault: experiment [19] and
modeling.

Table 5
Comparison between experimental measurements [19] and numerical predictions for
the buried vault.

Fmax (kN) ur (mm)

Experimental [19] 24.70 6.75
Model 23.53 4.73
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Fig. 10. Force-displacement curves for the buried vault with different cohesions.
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load is transferred to the vault. A sensitivity analysis shows that a
lower cohesion (which corresponds to a softer material) causes
earlier numerical failure of the vault (Fig. 10).
(a) Experimental [19], referred as specimen SKM

Fig. 9. Failure mechanism of the buried vault: com
6. Conclusions

A numerical model was proposed to analyze the nonlinear
behavior of masonry vaults using a macro-modeling strategy. The
study includes the analyses of buried vaults up to failure. The non-
linear homogenization technique proposed by [45] was used to
study the masonry with the following modifications: the nonlinear
behavior of the components of the masonry is characterized by an
isotropic damage model and the directions of the masonry in a
vault were taken into account. The homogenization technique is
modified to include a regularization technique to reduce the
dependency of the solution with respect to the finite element
mesh. The model was programmed in the finite element code
CESAR-LCPC.
(b) Numerical, damage variable D22
(D=1 complete damage; D=0 no damage)

parison of experimental data and modeling.
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The model was used to reproduce elementary tests in tension
and compression. A good agreement was found between experi-
mental and numerical strengths. Then, experimental tests con-
ducted by [19] on circular vaults, were reproduced numerically.
Two cases were studied: a vault without filling and a buried vault.
The model satisfactorily reproduces the failure load, the four-hinge
failure mechanism, and estimates the deformation of the structure
during loading process up to failure. The simulations also show
that the mechanical properties of the fill material have an influence
on the way the applied load is transferred to the vault.

The proposed model can be used to study any masonry vault,
whose geometry can be represented by an elliptical curve. This
model will be used for the masonry vaults of the Paris metro, in
order to evaluate the serviceability state when nearby civil engi-
neering works alter the original equilibrium state of the structure.
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Appendix A

In the tables presented in this appendix, the following notations
are used:
Ta
Pr

te
q

ble A.1
operties of mo

Ref Mc

Un

E 15,
m 0.1
ft 2.7
Gft 79a

fc 58.
Ac 1.1
Bc 634
eD0 1.8

a Properties taken
b Properties taken
nsion measured b
Density (kg/m3)

E
 Young’s modulus (MPa)

m
 Poisson’s ratio

ft
 Tensile strength (MPa)

Gft
 Mode I fracture energy (Pa.m)

fc
 Compression strength (MPa)

Ac
 Damage model coefficient for compression [30]

Bc
 Damage model coefficient for compression [30]

eD0
 Damage threshold strain
rtar and brick for the validation of the compressive an

Nary and Abrams [31] Backes [

it1 Unit 2 Mortar M Unit KS1

000a 9900a 11,600a 4500b

3a 0.17a 0.096a 0.2
4a 1.79a 2.97 1.44b

52a 100 150
9a 44a 31.1a 23.2b

5 1.1 0.8 1.0
400 1318 275

4E�4 1.81E�4 2.65E�4 3.2E�4

from [48] other properties were proposed.
from [4]. The elasticity modulus have been proposed in such a way
y [4], i.e. E = 3870 and 3273 MPa for walls KS12-MGII and HLz12-M
In all cases the parameters Ac and Bc were proposed in such a way as
to obtain the value of the peak stress in the strain-stress curve
equals the known compressive strength. Damage threshold strains
were calculated with eD0 = ft/E0.

Table A.2
Properties of mortar and brick for the validation of the masonry
vault.
d

4]

2

tha
G I
Ref
tensile tes

Mo

112
0.2
0.1
9.0
3.5
0.8
356
1.1

t after the ho
II, respectivel
Krajewski and Hojdys [19]
Vault without fill
ts.

rtar MG II Unit HLZ 1

0b 3500b

0.2
3 0.9b

100
b 23.3b

1.0
206

6E�4 2.57E�4

mogenization process, we find the v
y. Other properties were proposed.
Buried vault
Unit
 Mortar
 Unit
2 Mort

1832
0.2
0.15
10
9.86b

1.0
246
8.19E

alue of the mason
Mortar
q
 1700a
 1700a
 1700a
 1700a
E
 10,000
 250a
 10,000
 150

m
 0.2a
 0.16a
 0.2a
 0.16a
ft
 0.9
 0.08a
 0.9
 0.08a
Gft
 100
 10
 100
 30

fc
 24.4a
 1.0a
 21.4a
 1.1a
Ac
 1.0
 0.5
 1.0
 0.5

Bc
 561
 269
 644
 142

eD0
 9E�5
 3.2E�4
 9E�5
 5.33E�4
a Properties taken from and [16,18,19], other properties were proposed.

Table A.3
Properties of the fill from of the buried vault.
Expanded clay
q
 300a
E
 10

m
 0.3

Cohesion (kPa)
 4.5

Friction angle (�)
 37a
Dilatancy angle (�)
 10

a Properties taken from [19], other properties were proposed.
ar MG III
b

�5

ry modules in
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