

Manuel d'utilisation

Ref: CESAR-MU(2D)-v2021.0.1-FR

Table des matières

1. Présentation de l'interface utilisateur	9
Introduction	9
L'interface	9
L'onglet FICHIER	10
La barre « Outils généraux »	11
La barre « Outils d'affichage et de sélection »	11
La barre verticale « Palette des couleurs »	12
Les onglets – Les différentes étapes d'une étude	13
Les grilles – Boîtes de dialogue type « Appliquer / Montrer »	13
L'arborescence des modeles	16 17
	17
2. Gestion des fichiers	19
Noms de fichiers	19
Fichiers générés par CESAR-LCPC	19
3. Conventions et notations	21
Points et lignes « épure » du modèle géométrique (« Sketch »)	21
Le « modèle géométrique » : Ensemble de blocs	21
Les « modèles »	24
Mode « G » (Géométrie) ou mode « M » (Maillage)	25
4. Sélections	27
Sélections possibles	28
Actions de sélection	29
5. Définition de la géométrie du modèle	31
Ĵ***	
Définition du plan de travail	31
L	
Création de points	33
/	
Lignes	34
C	
Arcs de cercle	38
	20
Arcs a ellipses	39
\mathcal{N} Définition de pièces sur une courbe spline	40
Congés de raccordement	40
Lo	
Découpage de lignes	41
Simplification	41

Т			
T×	Opérations sur lignes : Translation, Symétrie, Rotation	42	
Вт	Création de « blocs 1D »	45	
T.N	Opérations sur blocs : Translation, Symétrie, Rotation	47	
1	Extrusion	50	
B	Grouper des blocs (« Merge »)	50	
	Dégrouper des blocs (« Explode »)	51	
	Créations d'interfaces de « contact »	51	
\mathbf{N}	Définition d'ancrages	52	
٩.	Liaisons blocs 1D	53	
-15	Création manuelle d'éléments : Blocs « multi-points »	54	
	Liaison des ancrages	55	
	Liaison bloc/mur	58	
Ę	Scénario	60	
1	Regénérer une surface	61	
	Suppression	61	
5	Annuler	61	
2	Rétablir	61	
	Couleurs	62	
	Propriétés du modèle	62	
(j)	Informations sur blocs	62	
×	Correction de la géométrie	62	
←)	Cotes	63	
6. Dé	finition du maillage		65
.1			
1" af 1	Découpages par nombre d'intervalles	65	
ↆ	Découpages par distance	65	
n/p	Découpages variables	66	

Maillage des blocs 1D	68	
Orientation blocs 1D	68	
Maillage de blocs surfaciques	69	
Propriétés du maillage	72	
(i) Informations sur blocs	72	
7. Notion de problème physique élémentaire		73
Physiques élémentaires disponibles	73	
Contenu de chaque problème élémentaire	73	
Compatibilité des "physiques"	75	
8. Définition des « modèles »		77
Gestion des « modeles »	70	
Proprietes à un modele	79	
Le « partage » des ensembles (proprietes, conditions aux limites, charges) entre plusieurs modèles	83	
Champs de contraintes initiales pour les analyses géotechniques	04 06	
champs de contraintes initiales pour les analyses géotechniques	00	
9. Définition des propriétés du modèle		89
Définition des tables de propriétés	89	
Affectation « graphique » des propriétés	93	
Affectation « tableau » des propriétés	94	
Définition de l'attribut Actif / Inactif	95	
10. Initialisations des paramètres		97
Introduction	97	
	51	
Initialisation des déplacements par mouvement de blocs rigide	99	
Initialisation des déplacements par lecture sur fichier	99	
Initialisation des vitesses par mouvement de blocs rigide	99	
Initialisation des vitesses par lecture sur fichier	100	
Contraintes initiales uniformes par bloc	100	
Contraintes initiales géostatiques	101	
Si Initialisation des contraintes par lecture sur fichier	102	
b Initialisation des charges de manière uniforme en tout point	102	
Initialisation des charges en fonction de la cote	103	

Charge initiale uniforme par bloc	103	
h Initialisation des charges par lecture sur fichier	104	
(D) Initialisation des températures de manière uniforme en tout point	104	
Température initiale uniforme par bloc	104	
b Initialisation des températures par lecture sur fichier	105	
P Initialisation des pressions de manière uniforme en tout point	105	
Initialisation des pressions en fonction de la cote	106	
Pression initiale uniforme par bloc	106	
Initialisation des pressions par lecture sur fichier	107	
11. Définition d'un « ensemble » de conditions aux limites		109
Introduction Création d'un nouvel encemble de conditions aux limites	109	
	112	
Mécanique : Blocage latéral et inférieur	113	
Mécanique : Blocage latéral, inférieur (horizontal et vertical)	113	
Mécanique : Blocage latéral, inférieur et supérieur	113	
Mécanique : Définition générale de déplacements imposés	114	
Mécanique : Changements de repères	115	
h Hydrogéologie : Charges imposées	117	
Hydrogéologie : Charges imposées variant linéairement avec la profondeur	117	
Hydrogéologie : Conditions de suintement	117	
Hydrogéologie : Conditions d'échange	118	
θ Thermique : Températures imposées	119	
Thermique : Conditions d'échange	119	
P Pression : Pressions imposées	120	
Pression : Conditions d'échange	121	
12. Définition de cas de charge		123
Introduction Création d'un nouveau cas de charge	123 126	

+			
•	Mécanique : Forces ponctuelles	127	
<u>fiii</u>	Mécanique : Pression répartie	128	
A	Pression hydrostatique	129	
λ	Mécanique : Forces de déconfinement	131	
I	Mécanique : Forces de pesanteur	134	
σ	Mécanique : Contraintes constantes par groupes	135	
ď	Mécanique : Contraintes lues sur fichier	135	
<u>ر</u>	Mécanique : Contraintes thermiques	136	
	Mécanique : Effets différés	137	
$\mathbf{\nabla}$	Changement de position de nappe	139	
V	Définition des blocs affectés par le changement de nappe	141	
₩	Flux réparti uniforme	141	
₩	Débits ponctuels	142	
X	Débits volumiques	142	
13. D	éfinition des paramètres du « module de calcul »		143
Introd	uction	143	
Accès	aux paramètres de calcul	143	
Modul	le LINE	144	
Modul	le MCNL	146	

Module MCNL Module TCNL Module DYNI Module FLAM Module LINC Module LINH Module MODE Module SUMO Module SUMO Module DTNL Module NSAT Module TEXO Module MEXO Module CSNL Module MPNL

14. Gestion des calculs

150

152

156

159

161

162

164

167

172

177

183

186

191

197

198

197

	Arrêt des calculs	199	
Dat	Visualisation du fichier de données	199	
Res	Visualisation du « listing »	199	
Ľ	Les Enregistrer, Enregistrer sous	199	
P	Rechercher	199	
		200	
	Montrer le modele	200	
NG0	Options d'affichage du modèle	200	
15. V	isualisation des résultats		201
Introd	luction	201	
	Choix du type des résultats à afficher	202	
	Enveloppe de résultats isovaleurs	203	
Y	Choix de l'entité et animation des résultats	204	
A	Options maillage	206	
	Options de la déformée	207	
S	Options des isovaleurs	208	
	Options vecteurs	211	
	Options tenseurs	213	
ন্য	Options résultats poutres	215	
	Options état du contact	215	
	Légende	216	
(j)	Informations	217	
N	Résultats affichés par groupe	218	
Res	Listing de résultats	218	
16. C	ourbes de résultats		219
		_	
°	Points	221	
0 0	Ensembles de points	221	

Lignes	222	
69		
••••••••••••••••••••••••••••••••••••••	222	
Inversion du sens de lignes de coupe	222	
Évolution d'un paramètre suivant une ligne de coupe	223	
Evolution d'un paramètre en fonction du temps (incréments) pour un ensemble de points	224	
Paramètre fonction d'un paramètre	225	
Options de visualisation des courbes	226	
Stockage des résultats courbes	227	
A1. Identification des scalaires résultats		229
Blocs surfaciques	229	
Blocs 1D (barros, poutros)	221	
Visiterine	201	
vecteurs	231	
lenseurs	232	

1. Présentation de l'interface utilisateur

Introduction

Ce chapitre décrit les principes généraux de fonctionnement et d'utilisation du logiciel. Il décrit en particulier les différents éléments constituant "l'interface". Vous découvrirez ici le mode d'utilisation des menus, onglets, outils et boîtes de dialogues et commencerez à vous familiariser avec la philosophie générale d'utilisation.

L'interface

La figure ci-dessous visualise l'interface du logiciel et montre les principaux éléments constitutifs de ce dernier.

L'onglet FICHIER

Le premier élément constitutif de l'interface utilisateur est le « bouton départ ». L'activation de ce bouton entraîne l'affichage d'un menu déroulant permettant l'accès à la plupart des fonctions proposées par le menu « Fichier » des interfaces traditionnelles.

Notons en particulier les commandes de base suivantes :

- Di Nouveau : Ouverture d'une nouvelle étude
- 🔎 Ouvrir : Ouverture d'une étude existante
- 🗟 Enregistrer : Sauvegarde de l'étude en cours
- Enregistrer sous : Sauvegarde de l'étude en cours avec définition du nom de l'étude
- 💷 Quitter : Fermeture de l'application

La barre « Outils généraux »

La barre « Outils généraux » permet l'accès rapide et permanent à un ensemble de fonctionnalités très souvent utilisées dans le déroulement d'une étude.

Cette barre d'outils contient en particulier les fonctions suivantes.

- Gestion des fichiers
 - 🗋 Créer une nouvelle étude
 - 🛛 🔎 Ouvrir : Ouverture d'une étude existante
 - 🛛 🗟 Enregistrer : Sauvegarde de l'étude en cours
- Réglages
- IIIIII Choix du langage pour l'interface
- Entry Préférences : Définition des préférences générales de l'application
- 🚽 Préférences : Définition des préférences de l'étude
- Définition des unités courantes

La barre « Outils d'affichage et de sélection »

La barre « Outils d'affichage et de sélection » permet l'accès rapide et permanent à un ensemble de fonctionnalités très souvent utilisées dans le déroulement d'une étude. Cette barre est toujours disponible et s'actualise en fonction des entités accessibles à l'étape active du modèle.

Cette barre d'outils contient en particulier les fonctions suivantes.

- Affichages
- Č Les éléments sélectionnés sont cachés (Rendus invisibles)
- 🐁 🐝 Seuls les éléments sélectionnés sont visibles
- Prous les éléments du modèle redeviennent visibles
- Vues
- Affichage plein écran de la représentation de la structure
- Zoom : Agrandissement de l'image proposée à l'écran
- 🗣 Déplacement de l'image de la structure proposée à l'écran (pan)
- 🧧 Capture de l'espace de travail

- Sélections

- 📝 Réglage des options de sélection
- 🔭 Aucune entité n'est sélectionnable
- Activation de l'attribut de sélection des points
- Activation de l'attribut de sélection des lignes
- Activation de l'attribut de sélection des « blocs » (bodies)
- Sélections de blocs
 - Sélection/activation des blocs surfaciques
 - Sélection/activation des blocs 1D

- Sélection/activation des blocs d'interface
- Kélection/activation des blocs manuels
- 👌 Sélection/activation des blocs liaisons
- Aucune sélection/activation de blocs
- Autres sélections
 - 🛛 😼 Sélection par type de maillage (accessible uniquement à l'étape "MAILLAGE")
 - 🛼 Sélection par couleur
 - 📓 Sélection par ligne brisée
 - · 🛛 🗟 Outil sélection
- Autres affichages
 - Affichage des noms des blocs (paramétrable dans "Réglages de l'application", puis "Polices").

La barre verticale « Palette des couleurs »

CESAR permet d'associer une couleur à chaque bloc du modèle. Cette définition est réalisée grâce à la « palette de couleurs » située sur la partie droite de l'écran.

Cette palette possède les fonctionnalités suivantes.

Modification de la couleur des entités sélectionnées

Le fait de cliquer avec le bouton gauche de la souris sur l'une des couleurs ci-dessus entraîne l'affectation de la couleur choisie à l'ensemble des entités sélectionnées.

Sélection des entités d'une couleur donnée

Le fait de cliquer avec le bouton droit de la souris sur l'une des couleurs ci-dessus entraîne la sélection de toutes les entités étant de cette couleur.

Les onglets – Les différentes étapes d'une étude

L'interface propose ensuite à l'utilisateur une série « d'onglets » correspondant aux différentes étapes de la réalisation d'une étude.

De manière générale, l'activation d'un onglet entraîne l'affichage d'une barre d'outils spécialisée permettant la réalisation de l'étape considérée (Géométrie, Maillage, Propriétés, ...).

CESAR 2D propose par défaut les onglets suivants :

- Géométrie : Définition de la géométrie de la structure.
- Maillage : Définition du maillage de la structure.
- Propriétés : Définition des « propriétés » des modèles (matériaux, sections, ...).
- Conditions limites : Définition des ensembles de conditions aux limites.
- Chargements : Définition des ensembles de charges.
- Gestion des calculs : Réalisation des calculs.
- Résultats : Visualisation graphique des résultats.
- Courbes : Visualisation des résultats sous forme de courbes.

La description détaillée des fonctionnalités associées aux onglets décrits ci-dessus fait l'objet de chapitres spécifiques.

Les grilles - Boîtes de dialogue type « Appliquer / Montrer »

L'activation d'un outil dans la barre associée à l'onglet courant entraîne le plus souvent l'affichage sur la gauche de l'écran d'une « grille boîte de dialogue » comme indiqué dans la figure ci-dessous.

9 🗋 🗃	= 1. · ©	e e (C	ESAR-L	CPC (2D)) - ndpfr-
FICHIER	GEOMETRIE	MAILLAGE	PROPRIET	es initia	LISATION	PARAME	TRES	CONDITI	IONS LI	MITES	СН	ARGEME	INTS
	Model1	•	LoadSet1	•	м	+ +		15	F	Po	பி	8	
Style	Mo	dèle	Cas de	charges					Méca	inique		-	
Pression répa	artie		4×	0 🐼 😕		6	1 X 1	14 14 U		/ 0	.6	N	湯 💽 🔹
Appliquer M	lontrer	_											
Définition	Définition												
P		V P2	★ x										
Charges ré	parties						Gr	ille b	oîte	e de	dial	oque	ę
Pression un P [MN/m]	itorme	0.000					as	socié	e à	l'ou	til co	ourai	nt
. frind uil							u5.		cu	. 54		cara	

La boîte de dialogue ci-dessus sert par exemple à l'affectation de pressions uniformes sur un élément de poutre. De manière générique, l'affectation d'une propriété à une entité sélectionnée du modèle s'effectuera-en suivant la démarche standard ci-dessous :

Affecter des propriétés (Bouton : Appliquer)

Bouton « Appliquer »

Fo ces nodales		₽×
Appliquer Montrer		
⊿ Force		
Fx [MN]	0.000	
Fy [MN]	0.000	
Moment		
Mz [MN m]	0.000	

L'affection de propriétés est caractérisée par la séquence d'opérations ci-dessous :

- Activation de l'outil permettant l'action
- Définition des propriétés associées)
- Sélection des entités (surfaces, blocs...) possédant la propriété considérée
- Activation du bouton « Appliquer » de la boîte de dialogue pour affecter les propriétés ainsi définies aux entités sélectionnées.

Appliquer Montrer

Le bouton "**Appliquer**" permet **d'affecter les propriétés** définies dans la boîte de dialogue à l'ensemble des **entités sélectionnées.**

Récupérer les propriétés affectées à une entité (Mode information par clic bouton droit)

De manière générale, il est possible de « récupérer » les propriétés affectées à une entité en cliquant simplement sur cette dernière à l'aide du **bouton droit de la souris**. Les propriétés affectées sont ici affichées dans la grille boîte de dialogue.

Visualiser les entités ayant des propriétés données (Bouton : Montrer)

La plupart des boîtes de dialogues interactives possèdent un bouton "Montrer" permettant la visualisation de l'ensemble des entités possédant la (ou les) propriété(s) définie(s) dans la boîte de dialogue.

Appliquer Montrer

Le bouton "**Montrer**" permet de sélectionner les entités (et donc de les visualiser) possédant les propriétés définies dans la boîte de dialogue.

La récupération de points ou vecteurs dans les grilles – Boîtes de dialogue

Dans de nombreux cas, il est nécessaire de définir dans une boîte de dialogue les coordonnées d'un point ou d'un vecteur pour caractériser une opération (Définition plan de travail, opération de translation, ...). Il est ainsi souvent intéressant dans ces cas-là de pouvoir « récupérer » les coordonnées du point ou du vecteur à l'aide du modèle géométrique déjà partiellement défini.

Cette opération est possible à l'aide des boutons « \mathbb{P} et \mathbb{V} » proposés dans les boîtes de dialogue considérées. Nous montrons ci-dessous à titre d'exemple le cas particulier de la boîte de dialogue permettant la définition d'une opération de symétrie.

Translation / Rotation	n / Symétrie 🛛 🕈 🗙
Appliquer Montrer	
Type d'opération	
S	, <mark>v v s</mark>
 Translation Rotation Symétrie 	
Symétrie	
Déplacer entités sélectio	
⊿ Point	0.000; 0.000
X [m]	0.000
Y [m]	0.000
∠ Vecteur	0.000; 0.000
Vx [m]	0.000
Vy [m]	0.000

Pour récupérer les coordonnées d'un point du modèle il suffira ici de suivre la séquence suivante :

- 1. Cliquer sur le bouton 🕑 de la boîte de dialogue.
- 2. Cliquer sur le point considéré dans le modèle géométrique. Les coordonnées du point cliqué sont affichées dans la boîte de dialogue.

Pour récupérer les coordonnées d'un vecteur à l'aide des points du modèle il suffira ici de suivre la séquence suivante :

- 1. Cliquer sur le bouton 🛛 de la boîte de dialogue.
- 2. Cliquer sur un point dans le modèle géométrique pour définir le « point de départ » du vecteur.
- 3. Cliquer sur un second point pour définir l'extrémité du vecteur. Les coordonnées du vecteur défini sont affichées dans la boîte de dialogue.

L'arborescence des modèles

Cette espace de travail permet de visualiser en temps réel l'ensemble des modèles créés ainsi que leur contenu.

Sous forme d'explorateur, il permet à tout moment de savoir quel est l'entité active (cas de charge, propriétés, conditions aux limites...), celle-ci étant affichée en gras.

Un double clic sur une entité (cas de charge par exemple) permet d'actualiser automatiquement l'affichage de l'espace de travail pour qu'il corresponde à ce choix.

Dans cette arborescence, il est possible de modifier les noms affectés par défaut en utilisant la touche [F2].

Ainsi ci-dessous, on liste 2 modèles en Mécanique "Stage #1" et "Stage #2", ainsi qu'un modèle en Hydrogéologie 'Drawdown" (Rabattement).

L'arborescence des données

On passe de l'arborescence des modèles à l'arborescence des données par simple clic. Ainsi plusieurs icônes sont présentées pour accéder à diverses entités :

- 🔁 Arborescence des modèles
- Marborescence des blocs
- Arborescence des propriétés
- HArborescence des dimensions (uniquement dans GEOMETRIE)

L'arborescence des données permet d'accéder à la liste des blocs que comprend le modèle. Un clic sur l'un de ces blocs listés permet sa sélection.

On peut aussi, pour chaque entité (cas de charge, conditions limites...), avoir le listing des données que l'utilisateur a affecté à l'entité.

Blocs μ× S R Blocs Blocs 🋸 Bloc surfacique 💡 🦜 [12] Surf_12 💡 🦜 [13] Surf_13 💡 🦜 [14] Surf_14 💡 🛸 [15] Surf_15 Bloc 1D 💡 🦯 [16] Line_16 Bloc interface 💡 🥪 [17] Cont_17 💡 🥪 [18] Cont_18 Bloc de liaison A Bloc multi-points

Exemple 1 - liste des chargements associés au cas de charge « LoadSet1 » :

- Un chargement mécanique de type "Forces de déconfinement" (MECH_FDEC),
- Un chargement mécanique de type forces de gravité (MECH_FG).
- Un chargement mécanique de type pression uniforme (MECH_P).

Exemple 2 - liste des blocs du modèle :

- 4 blocs surfaciques,
- 1 bloc 1D,
- 2 blocs d'interface.

L'arborescence des données aide aussi l'utilisateur à gérer les éléments de son modèle.

En ce qui concerne les blocs, ¹⁰⁰, on peut les afficher ou les cacher.

En ce qui concerne les données affectées au modèle, 🥮, on peut :

- Montrer les parties du modèle sur lesquelles elles sont affectées. Un clic sur l'entité dans l'arborescence des données sélectionne la partie du modèle dans l'espace de travail.
- Accéder à leur détail : forces appliquées, conditions aux limites, propriétés matérielles... Un clic droit sur l'élément active « Propriétés ». La grille de dialogue est alors mise à jour.

2. Gestion des fichiers

Noms de fichiers

Attention aux noms que vous choisissez pour vos études. Si l'interface CLEO accepte n'importe quel nom, ce n'est pas le cas du solveur.

Le nom de l'étude ne doit pas :i

- commencer par un chiffre (mais peut en contenir) ;
- contenir les caractères : "_", " ", "/", "\" ; "(" ou ")" ;
- dépasser un nombre maximal de caractères spécifié dans le texte de la fenêtre de lancement des calculs.

Si au lancement des calculs, vous obtenez dans la fenêtre de lancement des calculs un message : "nom interdit" ou "fichier non trouvé", votre problème est lié au nom choisi. Il vous suffit alors de réenregistrer votre étude avec un nom correct et de relancer directement les calculs.

Si le nombre de caractères par défaut ne vous suffit pas, vous pouvez le modifier dans le fichier appelé SOLVCESV42.MTRL, situé dans le répertoire d'installation du solveur.

Dans ce fichier éditable, le champ LNOM1 correspond au nombre maximal de caractères pour un nom d'étude ou de calcul. Sa modification sera prise en compte pour tous les calculs ultérieurs.

Fichiers générés par CESAR-LCPC

Tout au long du procédé de génération et d'analyse du modèle, CESAR va générer plusieurs types de fichiers.

Prenons pour exemple une étude nommée TEST.

Fichiers d'études :

- TEST.cleo26 pour l'interface CLEO2D.
- TEST.cleo36 pour l'interface CLEO3D.
- Il contient toutes les informations du modèle (maillage, propriétés, résultats). Il fait le lien avec les autres fichiers.

Fichier des données pour le solveur :

Ce fichier ASCII est généré automatiquement par l'interface 2D ou 3D. Il traduit toutes les informations du modèle nécessaires au calcul. Comme un même fichier peut contenir plusieurs modèles de calcul Mi, le fichier généré se nommera : TEST_Mi.data.

Fichiers résultats :

- TEST_Mi.rsv4, fichier binaire contenant les résultats du modèle Mi ;
- TEST_Mi.list, fichier ASCII contenant les données du modèle, les résultats du calcul et le déroulement du calcul ;
- TEST_mail.resu, fichier binaire contenant les données du maillage ;

Fichiers de stockages :

Lors de calculs phasés, les reprise/initialisations se font sur la base de champs de contraintes stockés. Ceux-ci ont pour extension .rst. Ainsi, si spécifié, le résultat du calcul TEST_Mi.data générera le fichier TEST_Mi.rst.

Il est important de conserver ces fichiers car ils éviteront à l'utilisateur de devoir recalculer la phase si une modification est opérée sur une phase ultérieure.

3. Conventions et notations

L'objectif de ce chapitre est la définition d'un ensemble de conventions et de notations utilisées dans CESAR de manière générale et dans le présent manuel en particulier. Ce préliminaire nous a semblé important pour éviter toute confusion dans la compréhension des explications données.

Points et lignes « épure » du modèle géométrique (« Sketch »)

Pour pouvoir définir la géométrie de la structure considérée, il nous faut le plus souvent définir un ensemble de **points** et de **lignes** qui serviront de support pour le modèle géométrique à réaliser.

Ces points et lignes sont définis à l'aide des outils du paragraphe « Dessin » de la barre d'outils « Géométrie ».

911	🗃 🖬 📕 • 🔅	r 🖉 🖗						CESAF	R-LCPC
FICHIER	GEOMETRIE	MAILLAGE	PROPRIETES	INITIALIS	ATION PARAME	TRES	CONDITION	IS LIMITES	C
1	/x / (ON	Rik-	, T		1	1	>	
Outils		Dessin			Constru	iction d	'un bloc		B
•									

Outils permettant la définition des points et lignes support du modèle

Il est important de noter ici que ces points et lignes ne sont que des entités servant d'aide à la construction du modèle géométrique. En tant que tels, ils ne font donc pas partie intégrante du « modèle géométrique » de la structure et ne pourront pas par exemple être « maillés ».

Les seules entités constituant le « modèle géométrique » considéré sont ce que nous appellerons ici de manière générique « **blocs** » (« bodies »). Nous verrons ainsi que pour qu'un point ou une ligne puisse être « maillée » (et donc appartenir au modèle géométrique), il conviendra de transformer ces derniers en « bloc ponctuel » ou « bloc 1D ».

Le « modèle géométrique » : Ensemble de blocs

Le « modèle géométrique » de la structure considérée est de fait un ensemble de « blocs ». Nous distinguerons tout d'abord les blocs standards de type suivant :

- Blocs « 1D » : après maillage, ces blocs deviendront par exemple des éléments de type « barre » ou « poutre » ;
- Blocs « Surfacique » : après maillage, ces blocs deviendront par exemple des éléments de plaque ou de coque.

Toutes les « surfaces » créées dans le module « Géométrie » sont par défaut des blocs respectivement « surfaciques ».

Pour qu'une ligne soit considérée comme un « bloc 1D », il faudra au contraire le déclarer explicitement en utilisant l'outil ci-dessous :

Pour illustrer cette notion de « blocs », considérons les différentes étapes conduisant à la création d'un modèle géométrique constitué par :

- un volume de sol
- un portique poutres

Etape 1 : Construction des 4 points et lignes du portique				
	A ce stade de la construction, nous avons donc ici :			
	Une épure constituée de			
	- 4 points			
	- 3 contours			
	qui vont nous servir de support pour construire le portique			
Etape 2 : Définition des 4 points et contour ferr	né du volume de sol			
	A ce stade de la construction, nous avons donc ici un modèle géométrique constitué par - un « bloc surfacique » (la surface créée automatiquement est par défaut un bloc)			
Etape 3 : Définition des deux poteaux verticaux				
[4] Poutre	Nous définissons ici les deux « blocs 1D » constituant les deux poteaux verticaux et la poutre horizontale du portique en utilisant l'outil « Création de blocs 1D ».			
	Nous avons donc ici un modèle géométrique constitué par - un « bloc surfacique » (le sol) - deux « blocs 1D » (le portique)			

La figure ci-dessous synthétise les conventions de notation utilisées dans l'exemple ci-dessus :

Pour compléter le modèle géométrique, nous utiliserons également les trois autres types de blocs suivants :

- Bloc « multi-points » : utilisé pour modéliser par exemple des relations linéaires entre points ou des « éléments spéciaux » avec matrices utilisateur
- Bloc « contact » : utilisé pour définir une zone de contact entre deux solides
- Bloc « liaisons » : utilisé pour caractériser des liaisons aux extrémités d'éléments de poutre

Les « modèles »

Sur la base du « modèle géométrique » de la structure, nous pourrons décliner plusieurs « modèles ». Un « modèle » contient l'ensemble des informations permettant la réalisation d'une « analyse »:

- Propriétés (matériaux, propriétés géométriques, ...)
- Conditions d'appui
- Conditions de charge

Chaque modèle appartiendra à l'un des « domaines » ci-dessous :

- Statique
- Dynamique
- Hydrogéologie
- Thermique
- Béton au jeune âge
- Consolidation
- Problème couplé

La création des modèles s'effectue à l'aide de l'arborescence définie sur la partie droite de l'interface utilisateur. En cliquant à l'aide du bouton droit de la souris sur l'un des domaines d'applications proposés, nous avons en effet accès à un menu déroulant proposant l'item « Créer un modèle ».

La figure ci-dessous montre à titre d'exemple l'arborescence « Modèles » après création de deux modèles (deux phases) dans le domaine statique et un modèle dans le domaine hydrogéologie.

Nous analyserons plus en détail cette procédure de création de modèle dans le chapitre ci-dessous « Définition des modèles ».

Mode « G » (Géométrie) ou mode « M » (Maillage)

Par défaut (Mode « G »), l'ensemble des « propriétés » caractérisant un modèle sont affectées sur des entités appartenant au modèle géométrique et donc totalement indépendantes du maillage associé à ce modèle. Une pression sera ainsi à titre d'exemple appliquée sur une surface du modèle géométrique et non sur les facettes d'un maillage. Les propriétés affectées étant indépendantes du maillage, elles seront conservées quelles que soient les modifications réalisées sur ce dernier. C'est l'avantage principal de ce mode dit ici « G ».

Dans certains cas, il peut néanmoins être intéressant de pouvoir affecter des propriétés sur des éléments du maillage (facette d'élément, nœud, ...). Pour couvrir ces besoins spécifiques, CESAR 2D offre à l'utilisateur la possibilité de travailler en mode « M » (Maillage).

Le passage d'un mode à l'autre est réalisé par l'intermédiaire des deux boutons ci-dessous (Exemple de la barre d'outils « Charges ») :

4. Sélections

Diverses entités sont sélectionnables en fonction de l'avancement de la génération du modèle. Il est important que l'utilisateur puisse sélectionner précisément l'une ou l'autre car certaines fonctionnalités demandent une entité précise (par exemple l'extrusion nécessite la sélection d'une « surface » et non d'un « bloc surfacique »).

Le paragraphe précédent a précisé les conventions de notation utilisées, elles sont synthétisées dans l'exemple ci-dessous :

Le principe général de sélection est de définir les éléments sélectionnables (« Entités ») sur les blocs supports (« Bloc support »).

- Sélections d'entités
 - 🖻 Réglage des options de sélection
 - X Aucune entité n'est sélectionnable
 - Activation de l'attribut de sélection des points
 - Activation de l'attribut de sélection des lignes
 - Activation de l'attribut de sélection des « blocs » (bodies)
- Sélections de blocs
 - Sélection/activation des blocs surfaciques
 - Sélection/activation des blocs 1D
 - Sélection/activation des blocs d'interface
 - 🏼 🔏 Sélection/activation des blocs manuels
 - ^{\\$} Sélection/activation des blocs liaisons
 - Aucune sélection/activation de blocs

Sélections possibles

Pour « Géométrie »,	« Maillage »	, « Propriétés »,	« Initialisations »
---------------------	--------------	-------------------	---------------------

Sélection 4 ×		
Entités		
Points	V	
Contours	V	
Blocs	V	
Bloc support		
Bloc surfacique	V	
Bloc 1D	V	
Bloc contact	V	
Bloc multi-points	V	
Bloc de liaison	V	

Pour « Conditions aux limites », « Chargements »

✓ Entités Points ✓ Contours ✓ Blocs ✓
Points Image: Contours Blocs Image: Contours
Contours Blocs
Blocs
Bloc support
Bloc surfacique
Bloc 1D
Bloc contact
Bloc multi-points
Bloc de liaison 📝
Options de sélection maillage
Segments par angle
Segments sur contour
Segments et noeuds

L'option de sélection « par angle » permet à l'utilisateur de sélectionner un ensemble d'entités répondant au critère d'angle de sélection. Ce critère est défini dans « Préférences > Précision ».

Pour « Résultats »

S	élection		ą	×
⊿	Entités			
	Points			
	Contours			
	Blocs	\sim		
⊿	Bloc support			
	Bloc surfacique	\checkmark		
	Bloc 1D	\checkmark		
	Bloc contact	\sim		
	Bloc multi-points	\checkmark		
	Bloc de liaison	\checkmark		

Pour « Graphiques »

Sélection 🛛 📮 🗙				
Entités				
Points				
Contours				
Options de sélection maillage				
Segments par angle	\checkmark			
Segments sur contour	\checkmark			
Segments et noeuds	\checkmark			
Facettes par angle				
Facettes sur surface				
Facettes et noeuds				
Entités de résultats				
Entité de résultat - point	\checkmark			
Entité de résultat - ligne	\checkmark			
Entité de résultat - ligne de coupe	\checkmark			

Actions de sélection

Sélection directe 🗟

L'activation de cette option permet la sélection d'éléments du modèle (points, pièces). La sélection se fait soit par simple clic à l'aide du bouton gauche de la souris sur l'entité considérée, soit en mode « lasso ».

Pour ajouter une ou plusieurs entités à la liste des entités sélectionnées, il conviendra de maintenir enfoncé le bouton SHIFT [1] du clavier pendant la sélection.

L'option « Sélection » étant active, la désélection de toutes les entités s'effectuera en cliquant « loin » de toute entité sélectionnable.

Pour « désélectionner » une entité sélectionnée, il convient de cliquer sur cette dernière en maintenant enfoncé le bouton SHIFT du clavier.

Sélection par couleur 🄜

L'activation de cette fonction entraine l'affichage de la palette des couleurs accessibles. Le simple choix d'une couleur entraine la sélection de l'ensemble des entités ayant cette couleur comme propriété.

Cette option est équivalente à l'utilisation directe la barre vertical "Palette de couleurs"

Sélection par ligne brisée 🖾

L'activation de cette option permet la définition à la souris d'une sélection comprise dans une région délimitée par des clics successifs.

Sélection par critère 穝

Cette option n'est accessible qu'à l'étape « Maillage ». Elle permet à l'utilisateur de paramétrer la sélection sur les 2 options suivantes :

- Blocs
 - Maillé
 - o Non maillé
 - o Sans critère
- Type de maillage
 - o Quadratique

- o Linéaire
- o Sans critère

S	élection		ф	×
Appliquer				
Critères de maillage				
	Option de maillage	Sans		-
	Degré d'interpolation	Sans		
		Non maillé		
		Maillé		

5. Définition de la géométrie du modèle

Définition du plan de travail

La définition de la géométrie d'un modèle s'appuie sur l'existence d'un « plan de travail courant ». Le plan horizontal XY est le plan de travail par défaut. Le plan de travail est en particulier employé pour les opérations suivantes.

- Définition directe de points à l'aide de la souris. Les points créés directement à l'aide de la souris (Opérations « lignes », « arcs »...) sont en effet obligatoirement contenus dans le plan de travail.
- Définition d'arcs de cercle. L'arc est contenu dans le plan de travail ou dans un plan parallèle à ce dernier.

L'outil « Définition du plan de travail » permet ainsi la définition des éléments suivants :

- Définition des caractéristiques du repère global courant
- Définition éventuelle des caractéristiques d'une grille de points représentés dans le plan de travail et constituant une aide lors de la construction du modèle. Si la grille est visible, ses points constitutifs sont autant de points préférentiels d'accroche lors de la construction interactive de lignes.

Son activation entraîne l'affichage de la boîte de dialogue ci-dessous.

Plan de travail 🛛 🕹 🕹				
Appliquer Enregistrer par defaut				
Définition du plan de travail				
Origine	0.00; 0.00	Ρ		
X [m]	0.00			
Y [m]	0.00			
⊿ Vx	1.000e+00; 0.000e+00	V		
Vxx []	1.000e+00			
Vxy []	0.000e+00			
⊿ Grille				
Grille visible				
Style de la grille : Points				
Style de la grille : Lig	Style de la grille : Lignes			
dX [m]	5.00			
dY [m]	5.00			
4 Plan de travail				
 Style du système de Style du système de 	 Style du système de coordonnées : Normal Style du système de coordonnées : Plan 			

Définir le plan de travail et les caractéristiques de la grille

- 1. Renseigner les coordonnées de l'origine. Par défaut, l'origine est (0, 0).
- 2. Renseigner Vxx et Vyy, les composantes du vecteur d'orientation de l'axe Ox. Par défaut : (Vxx , Vxy) = (1 , 0).
- 3. Paramétrer la grille en activant ou non sa visibilité, en définissant le pas de grille dX et dY. Par défaut : (dX , dY) = (0.2 , 0.2).
- 4. Appliquer.

Modification interactive de l'origine

- 1. Cliquer sur 🕑 .
- 2. Cliquer sur un point de l'espace de travail.
- 3. Appliquer.

Modification interactive de l'orientation de l'axe Ox.

- 2. Cliquer deux points de l'espace de travail (départ et fin) définissant l'orientation de l'axe Ox.
- 3. Appliquer.

🖍 Création de points

Cet outil permet essentiellement la création de points par la donnée de leurs coordonnées au clavier.

Ces coordonnées sont données dans le « repère courant » (Voir : Système de coordonnées - Plan de travail).

Créer des points par la donnée des coordonnées

- 1. Rentrer les coordonnées du premier point à créer.
- Cliquer sur le bouton « Appliquer » pour créer le point. Les points créés sont représentés à l'écran par un symbole carré. Le point n'est pas créé si les coordonnées données sont proches (Voir : Proximités) de celles d'un point existant.
- 3. Répéter les séquences 1 et 2 pour l'ensemble des points à définir.

Utiliser l'option « Points liés » pour créer des segments de droite

L'option « Points liés » permet la création de segments de droite reliant les points successifs définis à l'aide de la boîte de dialogue.

- 1. Définir les coordonnées du « point de départ » puis « Appliquer ». Par défaut, le « point de départ » correspond au dernier point créé à l'aide du bouton « Appliquer ».
- 2. Cocher la case « Points liés ».
- 3. Définir les coordonnées du « point d'arrivée ».
- 4. Cliquer sur le bouton « Appliquer » pour créer le point d'arrivée et le segment correspondant. Le point créé devient automatiquement le point de départ (point de référence de la boîte de dialogue) du segment suivant.

Pour passer d'un « contrôle » à l'autre dans la boîte de dialogue, il est possible d'utiliser la touche « Tab ».

Définir des coordonnées en mode relatif

L'option « Relatif » permet la définition des coordonnées d'un point par la donnée de ses coordonnées relatives par rapport à un point de référence.

- 1. Définir les coordonnées du point de référence. Par défaut, le « point de référence » correspond au dernier point créé à l'aide du bouton « Appliquer ». Le point de référence peut également être obtenu en cliquant sur un point du modèle à l'aide du bouton droit de la souris.
- 2. Cocher la case « Relatif ».
- 3. Rentrer les coordonnées relatives du point à créer.
- 4. Cliquer sur le bouton « Appliquer » pour créer le point qui devient automatiquement le nouveau point de référence.

Capturer les coordonnées d'un point

1. Le clic à l'aide du bouton droit de la souris sur un point déjà défini entraîne l'affichage dans la boite de dialogue des coordonnées du point cliqué. Ces coordonnées sont affichées dans le repère et le système de coordonnées définis courants.

Lignes

Cet outil permet la création de segments à l'aide de la souris.

Créer des lignes

- Définir le point de départ à l'aide du bouton gauche de la souris. Si le point cliqué est proche d'un point singulier, ce dernier est considéré comme le point de départ (voir paragraphe suivant). Dans le cas contraire, un point est créé dans le plan de travail à l'endroit cliqué.
- 2. Définir le point d'arrivée du segment de manière analogue. La procédure de création étant continue, ce point devient automatiquement le point de départ du segment de droite suivant.
- 3. Interrompre la procédure de création de segments. La procédure de création de segments de droite peut être interrompue par l'une des trois méthodes ci-dessous.
 - Double clic sur un point d'arrivée,
 - Activation de la touche « Echap » du clavier,
 - Activation d'un autre outil ou item de menu.
- Si le point défini à la souris n'est pas proche d'un point existant et si l'option "Grille magnétique" a été active (cf. option "Grille" du "Plan de travail"), alors le point créé sur le plan de travail sera automatiquement un point de la grille.

Création interactive d'une ligne

- 1. Définir le point de départ avec le bouton gauche de la souris. Si le point spécifié est à proximité d'un point de la grille ou un point existant, ce point sera considéré comme point de départ. Sinon, un nouveau point est créé sur l'espace de travail à l'endroit du click.
- 2. Déplacer la souris pour définir le second point du segment. Une ligne et un arc sont affichés avec des labels pour la longueur et l'angle.
- 3. Finir le segment :
 - Méthode 1 : classiquement, cliquer en un point de l'espace de travail.

Informations interactives

Lors du déplacement de la souris, des informations sont affichées interactivement en fonction du choix fait dans la grille de dialogue :

- Coordonnées (X , Y) du point sous la souris,
- Longueur et angle du segment à partir du premier point extrémité jusqu'au point sous la souris.

Accrochage interactif (« snap ») du point de départ

Lors de l'activation de l'outil, donc pour la définition du premier point du segment, le curseur déplacé par l'utilisateur va activer un symbole sur l'espace de travail pour les actions listées dans le tableau cidessous.

Action	Symbole	Représentation
Accrochage sur la grille	rectangle	
		· .
		· · ·
Accrochage sur un point	rectangle rouge autour du point	
		· •

Accrochage au milieu d'un segment	croix rouge	
Accrochage sur un segment	croix rouge	

Accrochage interactif (« snap ») du point d'arrivée

Après avoir défini le point de départ, l'utilisateur définira le point d'arrivée du segment avec l'aide du curseur déplacé sur l'espace de travail. Celui-ci affichera un symbole pour les actions d'accrochage listées dans le tableau ci-dessous. Une information complémentaire sous forme d'un label précisera de plus la nature de l'accrochage dans des cas précis.

Action	Symbole	Label	Représentation
Accrochage sur la grille	rectangle	-	P#2 DX=5.0m DY=3.0m g
Accrochage sur un point	rectangle rouge	-	P #2 DX=0.0m DY=4.0m L=4.0m, A=90.0dbg
Accrochage au milieu d'un segment	croix rouge	Milieu	L=3.4m; A=153.4deg

Accrochage sur un segment	croix rouge	-	<u>L=4.3m</u> ,A=174.1deg P #2 D X=-4.3m D Y=0.4m
Accrochage en un point d'un segment perpendiculaire au segment créé	croix rouge	Perpendiculaire	Perpendicular 8deg

Arcs de cercle

Cet outil permet de créer un arc de cercle parallèle au plan de travail courant. Deux méthodes de définition de cet arc de cercle sont ici proposées à l'utilisateur :

Définition par « Origine », « Fin », « Centre »

Définition par « Origine », « Fin », « Intermédiaire »

Créer un arc – Définition par Origine, Fin, Centre

- 1. Définir le point de départ de l'arc de cercle à l'aide du bouton gauche de la souris. Si le point cliqué est proche d'un point existant, ce dernier est considéré comme point de départ. Dans le cas contraire, un point est créé dans le plan de travail à l'endroit du point cliqué.
- 2. Définir le point d'arrivée de l'arc de cercle de manière analogue.
- 3. Définir la position du centre du cercle à l'aide du bouton gauche de la souris. Si le point cliqué est proche d'un point existant, ce dernier est utilisé pour définir le centre du cercle. Le centre est ensuite défini par la projection du point cliqué sur la médiatrice du segment reliant les points origine et extrémité.
- 4. La procédure de création peut être interrompue par l'une des deux méthodes ci-dessous :
 - Activation de la touche "Echap" du clavier,
 - Activation d'un autre outil ou item de menu.

R=1.769 G

Créer un arc – Définition par Origine, Fin, Intermédiaire

- 1. Définir le point de départ de l'arc de cercle à l'aide du bouton gauche de la souris. Si le point cliqué est proche d'un point existant, ce dernier est considéré comme point de départ. Dans le cas contraire, un point est créé dans le plan de travail à l'endroit du point cliqué.
- 2. Définir le point d'arrivée de l'arc de cercle de manière analogue.
- 3. Définir le point intermédiaire de l'arc de cercle de manière analogue.

Le rayon de l'arc de cercle en cours de création est renseigné de façon « dynamique » dans la grille de données.

R=1.844

Créer un cercle complet

Un cercle complet est dessiné lorsque les points de d'origine et de fin de l'arc de cercle sont confondus.

- 1. Définir le point de départ et le point d'arrivée sur le même point.
- 2. Définir la position du centre du cercle avec le bouton gauche de la souris.

Arcs d'ellipses

L'activation de cet outil entraîne l'affichage d'une boîte de dialogue permettant la création d'arcs d'ellipses.

Un arc d'ellipse est caractérisé par les données suivantes :

- Xc, Yc : Coordonnées du centre de l'ellipse
- La : Longueur du premier diamètre de l'ellipse
- Lb : Longueur du second diamètre de l'ellipse
- a : Angle entre l'axe x du repère du plan de travail et le premier diamètre de l'ellipse

- a_1 , a_2 : Angles définissant les points de départ et d'arrivée de l'arc d'ellipse. Si ces deux angles ont des valeurs identiques, l'ellipse sera considérée dans sa totalité. Un point caractéristique sera positionné à l'angle ainsi défini.

Créer des arcs d'ellipse

- 1. Définir les caractéristiques de l'ellipse définies ci-dessus.
- 2. Activer les boutons « Appliquer » pour créer l'ellipse ainsi considérée.

Définition de pièces sur une courbe spline

Cet outil permet de créer une courbe Spline. Une courbe Spline est définie par la donnée d'une série de points de référence positionnés sur la courbe.

Courbe spline	Ψ×
Courbe spline	
1 2 3 4	

Créer une courbe Spline

- Définir les points de référence de la courbe Spline à l'aide du bouton gauche de la souris. Si le point cliqué est proche d'un point existant, ce dernier est pris en compte comme point de référence. Dans le cas contraire, un point est considéré dans le plan de travail à l'endroit du point cliqué. Le dernier point de référence de la courbe Spline est signifié par un double clic.
- 2. La procédure de création de pièces sur une courbe Spline peut être interrompue par l'une des deux méthodes ci-dessous.
 - Activation de la touche "Echap" du clavier,
 - Activation d'un autre outil ou item de menu.

Cet outil permet la définition de congés de raccordement entre droites concourantes.

1		·		·			·	·	
				·	·				
							·		
				·					
4	÷ -		٠	·	·	·	·		
	λ÷.	/	R			·	·		
	\sim			·	·	·	·		
	- N								

Définir un congé de raccordement

- 1. Définir le rayon R du congé de raccordement dans la boîte de dialogue.
- 2. Cliquer sur la première des deux droites concourantes.
- 3. Cliquer sur la deuxième des deux droites concourantes. Notons ici que « la trace » du congé de raccordement en cours de définition est visualisée de manière dynamique à l'écran lorsque la souris avoisine lors de son déplacement un segment de droite admissible.

Cet outil permet de découper les lignes sélectionnées en plusieurs parties de longueurs égales.

Couper	₽×
Appliquer	
Définition de coupes	
•	
N=3	
	_
Nombre de segments 6	

Découper une ligne en plusieurs parties égales

- 1. Sélectionner les lignes à considérer.
- 2. Définir le nombre souhaité de découpes grâce à la liste déroulante « Nombre » proposée.
- 3. « Appliquer » pour obtenir la découpe des lignes sélectionnées.
- Utiliser les touches [Ctrl] ou [Shift] pour une sélection multiple.

$\mathbf{I} \rightarrow \mathbf{I}$ Simplification

Cet outil permet de supprimer les points intermédiaires à l'ensemble des lignes sélectionnées portés par la même courbe mathématique (segment de droite, cercle ou spline).

Simplifier

- 1. Activer l'outil « Simplifier ».
- 2. Sélectionner les lignes à « simplifier ».
- 3. « Appliquer » pour obtenir la simplification des lignes sélectionnées.

Opérations sur lignes : Translation, Symétrie, Rotation

Cet outil permet de déplacer ou de dupliquer par translation, symétrie et rotation l'ensemble des points et lignes sélectionnés.

Translation

Translation / Rotation / Symétrie	₽ ×
Appliquer Montrer	
Type d'opération	
 Translation Rotation Symétrie 	v → N
⊿ Translation	
Déplacer entités sélectionnées	
Nombre d'opérations	1
∠ Vecteur	0.000; 0.000
VX [m]	0.000
VV [m]	0.000

Copier des points et lignes par translation

- 1. Sélectionner le type d'opération « Translation »
- 2. Vérifier que la case « Déplacement des entités sélectionnées » n'est pas cochée.
- 3. Définir le nombre d'opérations de translation.
- 4. Définir les composantes Vx, Vy du vecteur de translation dans le repère global de la structure.
- 5. Sélectionner l'ensemble des points et pièces à copier par translation.
- 6. "Appliquer" pour réaliser l'opération de translation.
- Il est possible de récupérer de façon interactive les composantes du vecteur de translation V en suivant les étapes suivantes : i) cliquer sur le bouton « **V** » situé sur la ligne « Vecteur » ; ii) cliquer à l'aide du bouton gauche de la souris sur un point constituant le point de départ du vecteur V ; iii) cliquer sur un point constituant l'extrémité du vecteur V.

Déplacer des points et lignes par translation

- 1. Sélectionner l'ensemble des points et pièces à déplacer par translation.
- 2. Sélectionner le type d'opération « Translation »
- 3. Cocher la case « Déplacement des entités sélectionnées ».
- 4. Définir les composantes Vx, Vy du vecteur de translation dans le repère global de la structure.
- 5. "Appliquer" pour réaliser l'opération de déplacement.

Les entités peuvent être sélectionnées avant ou après l'activation de l'outil.

Rotation

Translation / Rotation / Symétrie		Ψ×
Appliquer Montrer		
Type d'opération		
By P2 N P1	<u>)1</u> ө	
 Translation Rotation Symétrie 		
A Rotation		
Déplacer entités sélectionnées		
Nombre d'opérations	1	
Theta [deg]	0.000	
⊿ Axe	0.000; 0.000	A
P1x [m]	0.000	
P1y [m]	0.000	

Copier des points et lignes par rotation

- 1. Sélectionner le type d'opération « Rotation ».
- 2. Vérifier que la case « Déplacement des entités sélectionnées » n'est pas cochée.
- 3. Définir le nombre d'opérations de rotation.
- 4. Définir l'angle de rotation Thêta.
- 5. Définir les coordonnées les deux points définissant l'axe de rotation.
- Sélectionner l'ensemble des points et pièces pour la rotation. 6.
- "Appliquer" pour réaliser l'opération de rotation. 7.

Déplacer des points et lignes par rotation

- Sélectionner le type d'opération « Rotation ». 1.
- 2. Cocher la case « Déplacement des entités sélectionnées »
- 3. Définir l'angle de rotation Thêta.
- 4. Définir les coordonnées les deux points définissant l'axe de rotation.
- 5. Sélectionner l'ensemble des points et pièces pour la rotation.
- 6. "Appliquer" pour réaliser l'opération de déplacement par rotation.

Il est possible de récupérer de façon interactive les coordonnées du centre de rotation en suivant les étapes suivantes : i) cliquer sur le bouton situé sur la ligne « Centre de rotation » ; ii) cliquer sur un nœud à l'aide du bouton gauche de la souris.

Les entités peuvent être sélectionnées avant ou après l'activation de l'outil.

Symétrie

Translation / Rotation / Symétrie	д	×
Appliquer Montrer		
Type d'opération		
S p→ v→ z		
 Translation Rotation Symétrie 		
Symétrie		
Déplacer entités sélectionnées		
Point	0.000; 0.000	Ρ
X [m]	0.000	
Y [m]	0.000	
Vecteur	0.000; 0.000	V
Vx [m]	0.000	
Vy [m]	0.000	

Copier des points et lignes par symétrie

- 1. Sélectionner le type d'opération « Symétrie ».
- 2. Vérifier que la case « Déplacement des entités sélectionnées » n'est pas cochée.
- 3. Donner les coordonnées X, Y définissant la position d'un point P du plan de symétrie.
- 4. Définir les composantes Vx, Vy d'un vecteur V normal au plan de symétrie.
- 5. Sélectionner l'ensemble des points et pièces à dupliquer par symétrie.
- 6. "Appliquer" pour réaliser l'opération de symétrie.

Déplacer des points et lignes par symétrie

- 1. Sélectionner le type d'opération « Symétrie ».
- 2. Cocher la case « Déplacement des entités sélectionnées »
- 3. Donner les coordonnées X, Y définissant la position d'un point P du plan de symétrie.
- 4. Définir les composantes Vx, Vy d'un vecteur V normal au plan de symétrie.
- 5. Sélectionner l'ensemble des points et pièces à dupliquer par symétrie.
- 6. "Appliquer" pour réaliser l'opération de symétrie.
- Il est possible de récupérer de façon interactive les coordonnées du point P en suivant les étapes suivantes : i) cliquer sur le bouton situé sur la ligne « Point P » ; ii) cliquer sur un nœud à l'aide du bouton gauche de la souris.
- Il est possible de récupérer de façon interactive les composantes du vecteur V en suivant les étapes suivantes : i) cliquer sur le bouton situé sur la ligne « Vecteur V » ; ii) cliquer à l'aide du bouton gauche de la souris sur un point constituant le point de départ du vecteur V ; iii) cliquer sur un point constituant le point de départ du vecteur V ; iii) cliquer sur un point constituant l'extrémité du vecteur V.
- Les entités peuvent être sélectionnées avant ou après l'activation de l'outil.

Création de « blocs 1D »

Cet outil permet de créer un bloc linéique à partir de l'ensemble des lignes sélectionnées. Notons que cette opération ne sera possible que dans la mesure où aucune des lignes sélectionnées n'appartient déjà à un « bloc linéique ».

Blocs 1D	д х
Appliquer	
Définition	N2
1 2	3
 Interactif Sélection 	
Propriétés du bloc	
Nom du bloc	-
 Ø Générique Ø Ancré Ø Noeud à noeud 	
Données dynamiques	
Coordonnées XY Longueur / Angle	
1	

3 types de blocs 1D sont proposés :

- "Générique" ; bloc 1D générique pour modéliser un élément barre ou poutre. Cet élément n'a pas de connexion particulière avec le maillage des éléments environnants. Il s'appuie sur le tracé de la géométrie.
- "Ancré" ; si le bloc 1D est compris dans un ou plusieurs blocs surfaciques, les noeuds de l'élément associé seront communs à ceux de l'élément surfacique. Autrement dit, le mailleur surfacique sera contraint de voir le bloc 1D ancré.
- "Nœud-à-noeud" ; si le bloc 1D est compris dans un ou plusieurs blocs surfaciques, seules ses extrémités seront "vues" par le mailleur surfacique.

Chaque type de bloc a une identité graphique associée.

Illustration d'usage pour un tirant : partie scellée (bloc 1D ancré) et partie libre (bloc 1D nœud-à-nœud)

Création interactive d'un bloc 1D

- 1. Sélectionner les lignes constituant le bloc 1D
- 2. Définir le nom du bloc dans la grille proposée
- 3. Cliquer sur le bouton « Appliquer » pour créer le bloc 1D.

Le bloc créé apparait dans l'arborescence des données sous un nom générique créé par le logiciel (Bodies).

Création dynamique d'un bloc 1D

- 1. Définir le point de départ avec le bouton gauche de la souris. Si le point spécifié est à proximité d'un point de la grille ou un point existant, ce point sera considéré comme point de départ. Sinon, un nouveau point est créé sur l'espace de travail à l'endroit du click.
- 2. Sélectionner une méthode dynamique :
 - Coordonnées XY
 - Longueur/Angle
- 3. Déplacer la souris pour définir le second point du segment.
 - Si "Coordonnées XY", une ligne et un arc sont affichés avec des labels pour les déplacements relatifs en ΔX et ΔY dans le plan de travail.
 - Si "Longueur/Angle", une ligne et un arc sont affichés avec des labels pour la longueur et l'angle.

Finir le bloc 1D :

- 1. Méthode 1 : classiquement, cliquer en un point de l'espace de travail.
- 2. Méthode 2 : interactivement, spécifier la longueur et l'angle dans les labels. Valider ces valeurs par la touche [Tab] (les labels deviennent gris). Presser [Enter] pour créer le segment.

♥ T T^A Opérations sur blocs : Translation, Symétrie, Rotation

Cet outil permet de dupliquer par translation, symétrie et rotation l'ensemble des blocs du modèle sélectionnés.

Translation d'un bloc

Translation / Rotation / Symétrie		φ×
Appliquer Montrer		
Type d'opération		
Translation Rotation Symétrie	,N	
△ Translation		
Déplacer entités sélectionnées		
Nombre d'opérations	1	
∠ Vecteur	0.000; 0.000	V
VX [m]	0.000	
VY [m]	0.000	

Copier des blocs par translation

- 1. Sélectionner le type d'opération « Translation »
- 2. Vérifier que la case « Déplacer entités sélectionnées » n'est pas cochée.
- 3. Définir le nombre d'opérations de translation.
- 4. Définir les composantes Vx, Vy du vecteur de translation dans le repère global de la structure.
- 5. Sélectionner l'ensemble des blocs à copier par translation.
- 6. "Appliquer" pour réaliser l'opération de translation.
- Récupérer interactivement les composantes du vecteur de translation V en suivant les étapes suivantes : i) cliquer sur le bouton « **V** » de la ligne « Vecteur » ; ii) cliquer à l'aide du bouton gauche de la souris sur le point de départ du vecteur V ; iii) cliquer sur un point constituant l'extrémité du vecteur V.

Déplacer des blocs par translation

- 1. Sélectionner l'ensemble des blocs à déplacer par translation.
- 2. Sélectionner le type d'opération « Translation »
- 3. Cocher la case « Déplacer entités sélectionnées ».
- 4. Définir les composantes Vx, Vy du vecteur de translation dans le repère global de la structure.
- 5. "Appliquer" pour réaliser l'opération de déplacement.

Rotation d'un bloc

Translation / Rotation / Symétrie		Ψ×
Appliquer Montrer		
Type d'opération		
P2 N P1	9 <u>)1</u> 0	
 Translation Rotation Symétrie 		
A Rotation		
Déplacer entités sélectionnées		
Nombre d'opérations	1	
Theta [deg]	0.000	
⊿ Axe	0.000; 0.000	A
P1x [m]	0.000	
P1y [m]	0.000	

Copier des blocs par rotation

- 1. Sélectionner le type d'opération « Rotation ».
- 2. Vérifier que la case « Déplacement des entités sélectionnées » n'est pas cochée.
- 3. Définir le nombre d'opérations de rotation.
- 4. Définir l'angle de rotation Thêta.
- 5. Définir les coordonnées les deux points définissant l'axe de rotation.
- 6. Sélectionner l'ensemble des blocs_pour la rotation.
- 7. "Appliquer" pour réaliser l'opération de rotation.

Déplacer des blocs par rotation

- 1. Sélectionner le type d'opération « Rotation ».
- 2. Cocher la case « Déplacer entités sélectionnées »
- 3. Définir l'angle de rotation Thêta.
- 4. Définir les coordonnées les deux points définissant l'axe de rotation.
- 5. Sélectionner l'ensemble des blocs_pour la rotation.
- 6. "Appliquer" pour réaliser l'opération de déplacement par rotation.

Il est possible de récupérer de façon interactive les coordonnées du centre de rotation en suivant les étapes suivantes : i) cliquer sur le bouton situé sur la ligne « Centre de rotation » ; ii) cliquer sur un nœud à l'aide du bouton gauche de la souris.

Symétrie d'un bloc

Translation / Rotation / Symétrie		Ψ×
Appliquer Montrer		
Type d'opération		
S P Z		
 Translation Rotation Symétrie 		
Symétrie		
Déplacer entités sélectionnées		
Point	0.000; 0.000	P
X [m]	0.000	
Y [m]	0.000	
Vecteur	0.000; 0.000	V
Vx [m]	0.000	
Vy [m]	0.000	

Copier des blocs par symétrie

- 1. Sélectionner le type d'opération « Symétrie ».
- 2. Vérifier que la case « Déplacer entités sélectionnées » n'est pas cochée.
- 3. Donner les coordonnées X, Y définissant la position d'un point P du plan de symétrie.
- 4. Définir les composantes Vx, Vy d'un vecteur V normal au plan de symétrie.
- 5. Sélectionner l'ensemble des blocs à dupliquer par symétrie.
- 6. "Appliquer" pour réaliser l'opération de symétrie.

Déplacer des blocs par symétrie

- 1. Sélectionner le type d'opération « Symétrie ».
- 2. Cocher la case « Déplacer entités sélectionnées »
- 3. Donner les coordonnées X, Y définissant la position d'un point P du plan de symétrie.
- 4. Définir les composantes Vx, Vy d'un vecteur V normal au plan de symétrie.
- 5. Sélectionner l'ensemble des blocs à dupliquer par symétrie.
- 6. "Appliquer" pour réaliser l'opération de symétrie.
- Il est possible de récupérer de façon interactive les coordonnées du point P en suivant les étapes suivantes : i) cliquer sur le bouton situé sur la ligne « Point P » ; ii) cliquer sur un nœud à l'aide du bouton gauche de la souris.
- Il est possible de récupérer de façon interactive les composantes du vecteur V en suivant les étapes suivantes : i) cliquer sur le bouton situé sur la ligne « Vecteur V » ; ii) cliquer à l'aide du bouton gauche de la souris sur un point constituant le point de départ du vecteur V ; iii) cliquer sur un point constituant le point de départ du vecteur V ; iii) cliquer sur un point constituant l'extrémité du vecteur V.
- Les entités peuvent être sélectionnées avant ou après l'activation de l'outil.

Extrusion

Cet outil permet la création de blocs par extrusion des entités géométriques sélectionnées (points, lignes). L'extrusion de points entraînera la création d'éléments de type 1D tandis que l'extrusion de lignes entraînera la génération de blocs surfaciques. Il est ici possible de réaliser des extrusions par translation et des extrusions par rotation.

Réaliser une extrusion

- 1. Sélectionner l'ensemble des entités géométriques à extruder.
- Sélectionner le type « d'extrusion » (création de blocs 1D, surfaciques). Seuls les éléments sélectionnés du type associé seront alors pris en compte dans l'opération d'extrusion (Exemple : lignes sélectionnées si type d'extrusion = « création de blocs surfaciques »).
- 3. Sélectionner le type d'opération « translation » ou « rotation »
- 4. Définir le nombre d'opérations de « translation » ou « rotation »
 - Si translation : Définir les composantes Vx, Vy, Vz du vecteur de translation dans le repère global de la structure.

L'extrusion en translation d'une ligne ne peut se faire dans l'axe originel de la ligne.

- Si rotation : Définir l'angle de rotation ainsi que les coordonnées de deux points P1 et P2 définissant l'axe de rotation dans le repère global de la structure.

L'axe de rotation doit être dans le même plan que l'élément à extruder (surface ou segment).

5. "Appliquer" pour réaliser l'opération d'extrusion.

Cet outil permet de grouper les blocs sélectionnés en un seul bloc.

Grouper les blocs sélectionnés

- 1. Choisir le type de blocs à grouper (1D, surfacique, interface).
- 2. Définir le nom du nouveau bloc.
- 3. Sélectionner les blocs à grouper.
- 4. "Appliquer" pour réaliser l'opération de groupage.

Dégrouper des blocs (« Explode »)

Cet outil permet de dégrouper les blocs sélectionnés ayant été groupés par une opération préalable.

Dégrouper les blocs sélectionnés

- 1. Sélectionner les blocs à dégrouper.
- 2. "Appliquer" pour réaliser l'opération de dégroupage.

Créations d'interfaces de « contact »

Cette option permet la définition d'un « blocs de type interface » sur un ensemble de contours commun entre blocs surfaciques.

	_	
I		I

Blocs d'interface de type « contact »

Blocs d'interface de type « liaison »

Générer un bloc de type « interface »

- 1. Sélectionner les contours à l'interface envisagée (outil de sélection 🔏).
- 2. Choisir le type d'élément servant à modéliser l'interface (contact à 6 ou liaisons à 2 nœuds)
- 3. Donner un nom au bloc d'interface à générer.
- 4. « Appliquer » pour créer les blocs d'interface ainsi définis. Ces derniers sont représentés à l'écran comme indiqué dans la figure ci-dessus.

Modifier un bloc de type « interface »

- Sélectionner les interfaces à modifier (outil de sélection 4 +).
- 2. Choisir le nouveau type de bloc d'interface (contact à 6 nœuds ou liaisons à 2 nœuds)
- 3. « Appliquer ».

Bloc de type « contact »

Définition d'ancrages

Cet outil permet d'affecter l'attribut « élément d'ancrage » à l'ensemble des blocs 1D sélectionnés. On peut ainsi modéliser des boulons ou des tirants.

Les blocs 1D possédant cet attribut seront utilisés lors des procédures de maillage des blocs surfaciques contenant ces derniers. Chacun des points de ces blocs 1D sera en effet considéré comme « point de passage obligé » pour le maillage surfacique. Cette prise en compte assurera ainsi le caractère « ancrage dans le volume » du bloc 1D considéré.

Blocs ancrage	4 ×
Appliquer Montrer	
Définition	
人下政	
Actions :	Création 🔹
O Ancré	
Noeud à noeud	
Méthode de création	
Création d'ancrages par	une longueur et un angle
Angle [deg]	35
Longueur [m]	7.500

Définir des ancrages – Méthode 1

- 1. Sélectionner un ensemble des blocs 1D.
- 2. Sélectionner l'action "Création"
- 3. Sélectionner un type d'ancrage à créer : "Ancrage" ou "Nœud-à-nœud"
- 4. Sélectionner la « Méthode 1 ». « Appliquer » pour prendre en compte l'opération demandée. Les blocs 1D possédant un attribut « Ancrage » sont représentés avec une épaisseur de trait double.

Définir des ancrages – Méthode 2

- 1. Sélectionner l'action "Création"
- 2. Sélectionner un type d'ancrage à créer : "Ancrage" ou "Nœud-à-nœud"
- 3. Sélectionner la "Méthode 2".
- 4. Définir un angle et une longueur.
- 5. Sur l'espace de travail, cliquer le point d'accroche du bloc ancrage à générer.

Supprimer des ancrages

- 1. Sélectionner l'ensemble des blocs 1D possédant l'attribut « Ancrage » à supprimer.
- 2. Sélectionner « Supprimer ».
- 3. « Appliquer » pour effacer l'attribut « Ancrage ».

Liaisons blocs 1D

Q

L'activation de cet outil permet la génération d'éléments spéciaux à deux nœuds positionnés sur une extrémité d'un bloc 1D. Ils sont créés par désignation directe à la souris de l'extrémité considérée.

Cette opération entraîne :

- La création d'un nœud possédant les mêmes coordonnées que le nœud extrémité de l'élément 1D,
- La création d'un élément "spécial " constitué par les deux nœuds ayant des coordonnées identiques (blocs de type « liaison »),

Les blocs de type « liaison » ainsi créé est visualisé de manière graphique par un symbole positionné à l'extrémité considérée du bloc 1D.

Représentation de blocs de type « liaison »

Les éléments de ce type seront principalement utilisés pour modéliser des liaisons particulières (rotules, ...) entre éléments de poutres.

Créer des blocs de type « liaison »

- 1. Activer l'outil « Liaisons blocs 1D ».
- 2. Définir le nom du bloc à créer.
- 3. Cliquer à l'aide du bouton gauche de la souris sur les extrémités des blocs 1D sur lesquels on souhaite construire une liaison.

Création manuelle d'éléments : Blocs « multi-points »

Cet outil permet la génération d'éléments de type « blocs multipoints ». La procédure de création d'un tel bloc est réalisée en utilisant la séquence définie ci-dessous.

Créer un bloc multipoint

- 1. Activer l'outil « Création manuelle d'éléments ».
- 2. Définir le nom du bloc à créer.
- 3. Sélection d'un point du modèle par clic avec le bouton droit de la souris. Les caractéristiques du point considéré sont affichées dans la boîte de dialogue.
- 4. Activation du bouton « + » pour ajouter le point sélectionné aux points constitutifs du bloc multipoint. Le numéro du point considéré est alors affiché dans le paragraphe « Elément » de la boîte de dialogue.
- 5. Répéter la séquence 3/4 pour l'ensemble des points constituant le bloc multipoint.
- 6. « Appliquer » pour générer le bloc multipoint ainsi défini. Le bloc ainsi créé est représenté par une ligne reliant les nœuds considérés et un symbole spécifique positionné sur chacun de ces nœuds.

Liaison des ancrages

Le fonctionnement par défaut relie les ancrages aux parois rencontrées (bloc 1D en 2D), même si des interfaces ont été définies sur ces blocs.

Dans des cas plus ambigus, l'utilisateur peut définir où accrocher l'ancrage.

- 1. L'utilisateur crée un ancrage qui a une ou deux de ses extrémités en commun avec le contour de 2 blocs.
- 2. Sur ce même contour, il y a des blocs d'interface. Il peut aussi y avoir un bloc modélisant une paroi entre 2 blocs de sol par exemple.
- 3. L'utilisateur doit pouvoir choisir à quel bloc de sol connecter l'ancrage.

Définition d'une liaison d'ancrage

On part de cet état :

Pour attacher le bloc ancrage "Anchors" au bloc surfacique "Surf_5", on procède comme suit.

- Choisir l'outil "Liaison des ancrages"
- 2. Dans la grille des propriétés, presser le bouton "A" sur l'item "bloc d'ancrage".
- 3. Choisir le bloc d'ancrage "Anchors"
- 4. Dans la grille de propriétés, presser le bouton "B" sur l'item "bloc lié"
- 5. Choisir le bloc lié "Surf_5"
- 6. Après ces actions, on a la situation suivante :

7. Presser le bouton "Sélection points" pour sélectionner les points en commun entre "Anchors" et "Surf_5"

Cet outil est seulement utile pour sélectionner TOUS les points en commun entre l'ancrage et le bloc cîblé. L'utilisateur peut aussi sélectionner cet ensemble de points manuellement.

8. Deux points sont sélectionnés :

9. Presser "Appliquer" pour créer les liaisons de l'ancrage, qui sont alors marquées par un petit indicateur rouge.

Les résultats après calcul montrent que les ancrages sont bien connectés au bloc de sol.

Les liaisons d'ancrages sont associées aux points, on peut donc définir des liaisons différentes pour le même bloc de plusieurs ancrages.

Dans ce cas, les résultats sont :

Suppression d'une liaison d'ancrage

- 1. Définir les blocs en liaison : 1 bloc ancrage et 1 bloc lié.
- 2. Cliquer sur "Sélection points" pour sélectionner les points de liaisons.
- 3. Sélectionner également le bloc d'ancrage (rappel : fonction [Maj] pour multi-sélections)
- 4. "Appliquer".

Liaison bloc/mur

Le fonctionnement par défaut relie les interfaces aux parois (blocs 1D en 2D ou blocs surface en 3D). Dans des cas ambigus, l'utilisateur peut sélectionner le bloc où lier l'interface.

- 1. L'utilisateur crée un contact entre deux blocs de sol.
- 2. L'utilisateur crée une paroi entre ces deux blocs de sol
- 3. L'utilisateur doit être capable de choisir une face de la paroi sur laquelle il n'y aura pas de contact (adhérence au sol)
- 4. Avec cette information, quand on lance le calcul, CESAR crée un bloc de contact sur la face qui n'est pas attachée au sol
- 5. Si l'utilisateur autorise les éléments de contact sur les deux faces de la paroi en ne définissant pas de liaison au sol, il sera alors capable d'appliquer différentes propriétés de contact sur chaque face.

Préciser une liaison bloc/mur

On part de cet état :

Il y a deux blocs de sol, un bloc de contact et deux blocs 1D constituant la paroi. Ces blocs sont entre deux blocs surfaciques.

Si on ne précise pas de liaison particulière, le programme créera deux groupes d'éléments de contact le long de chaque bloc 1D.

On veut lier les blocs 1D "paroi" au bloc surfacique "Surf_13" de sorte que le programme ne génère qu'un seul groupe d'éléments de contact entre la paroi et le bloc "Surf_14".

Pour lier les blocs "Line_12_1" et "Line_12_2" au bloc "Surf_13", on suit les étapes suivantes :

- 1. Masquer le bloc "Surf_14". On impose ainsi que les contours communs entre les blocs "Line_*" et "Surf_4" seront le côté lié.
- 2. Sélectionner ces contours en commun.

- 3. Activer l'outil Liaison bloc/mur
- 4. Choisir l'option "Créer une liaison au mur"
- 5. Presser le bouton "Appliquer"

Liaisons Blo	oc/Mur 4	×	
Appliquer			
I Type d'o	pération		
Oréer une liaison au mur Supprimer les liaisons aux murs sélectionnés			
2 D 1/2	2 1 P.1		

Les blocs 1D "paroi" sont marqués comme attachés au bloc "Surf_4". Cela signifie que lorsque le modèle de calcul sera créé, les nœuds des éléments de la paroi seront fusionnés aux nœuds du groupe "Surf_4" et aucun contact ne sera créé.

La présence d'une telle liaison est signalée par de petits cercles rouge sur les blocs 1D de la paroi.

Par un clic droit sur le bloc paroi, la grille de propriétés affiche les propriétés de la liaison :

Li	aisons Bloc / Mur	д	×	
A	Appliquer			
Δ	Type d'opération			
	Oréer une liaison au n	ıur		
	Supprimer les liaisons	aux murs sélectionnés		
Δ	Propriétés de liaison au mur			
	Bloc mur	[16] Line_12_2		
	Bloc lié	[13] Surf_13		

Scénario

Cet outil permet à l'utilisateur d'accéder à des scripts disponibles par défaut dans la bibliothèque CESAR ou créés par ses soins.

On se référera au document pour l'édition de ces scripts qui font appels au lange Python.

Par défaut, le script proposé est le script TunnelM, il permet de tracer des sections courantes de tunnel.

Scénario TunnelM

Ce scénario donne accès à trois géométries de tunnel :

- Tunnel circulaire
- Tunnel défini par 2 rayons et 2 angles
- Tunnel défini par 3 rayons et 3 angles

Pour les deux derniers cas, il est possible

- De déclarer une asymétrie
- De définir un radier non plat

Pour chaque tunnel, on propose 6 schémas d'excavation

- Excavation pleine section
- Excavation en section inférieure et section supérieure
- Avec découpe du stross
- Avec découpe de la section supérieure
- Avec découpe de la section supérieure en 4
- Avec découpe de la section supérieure en 2

Utiliser le script TunnelM

- 1. Sélectionner une forme de tunnel. Renseigner les paramètres associés.
- 2. Sélectionner un schéma d'excavation. Renseigner les paramètres associés.
- 3. Appliquer.

L'import de la géométrie se fait dans le plan de travail défini par l'utilisateur.

Regénérer une surface

Par défaut, un contour fermé est automatiquement transformé en bloc surfacique.

Après diverses manipulations géométriques, il peut arriver que l'automatisme ne fonctionne pas, laissant un contour fermé "vide". Dans ce cas-là, l'utilisateur utilisera l'outil "Regénérer une surface" pour créer le bloc surfacique associé au contour fermé.

Régénérer une surface

1. Cliquer sur le contour fermé "vide".

🔟 Sup

Suppression

Cet outil permet la suppression des entités sélectionnées. Notons ici que la suppression d'un bloc surfacique entraînera par défaut la suppression des lignes d'épure constituant leurs contours si ces dernières ne sont pas utilisées par un autre bloc du modèle. La boîte de dialogue proposée avec cet outil offre une option permettant la sauvegarde de ces lignes si ceci est souhaité.

Supprimer les blocs sélectionnés

- 1. Sélectionner les blocs à supprimer.
- 2. Décocher l'option « Suppression des lignes des blocs » si l'on souhaite conserver ces dernières
- 3. "Appliquer" pour réaliser l'opération de suppression.

Annuler

Cette option permet d'annuler la dernière action réalisée. Il est possible d'annuler plusieurs opérations successives en activant plusieurs fois l'option de menu « Edition / Annuler » ou en cliquant plusieurs fois sur le bouton « Annuler ».

L'action "Annuler" est également accessible par le raccourci classique du clavier : combinaison de touches [Ctrl] + z.

Rétablir

Cette option permet de rétablir la dernière action annulée. Il est possible de rétablir plusieurs opérations précédemment annulées en activant plusieurs fois l'option de menu « Edition / Rétablir » ou en cliquant plusieurs fois sur le bouton « Rétablir ».

L'action "Annuler" est également accessible par le raccourci classique du clavier : combinaison de touches [Ctrl] + y.

Couleurs

Cette option permet la modification de l'attribut de couleur des entités sélectionnées possédant un attribut de couleur.

Modifier la couleur des entités sélectionnées

- 1. Sélectionner les entités considérées.
- 2. Choisir la couleur à affecter en cliquant dans le pavé correspondant de la boîte de dialogue.
- Cette fonction est équivalente à utiliser directement la barre d'outils verticale "Palette de couleurs"

mento propriétés du modèle

L'activation de cet outil entraîne l'affichage d'une boîte de dialogue présentant les principales caractéristiques du modèle géométrique en cours de définition (Nombre de points, de lignes, de blocs, surface, ...).

Informations sur blocs

Cette option permet la visualisation des propriétés géométriques et attributs du bloc cliqué à l'aide du bouton droit de la souris. Il permet également la modification éventuelle du nom et de l'attribut de couleur.

Modifier la couleur et le nom d'un bloc

- 1. Cliquer à l'aide du bouton droit de la souris sur le bloc considéré. Les propriétés et attributs du bloc considéré sont affichés dans la boîte de dialogue.
- 2. Modifier si nécessaire le nom du bloc considéré.
- 3. Modifier si nécessaire la couleur du bloc considéré.
- 4. « Appliquer » pour prise en compte de ces modifications.

Correction de la géométrie

Cette option permet de vérifier la cohérence de toutes les entités géométriques créées. Par suite de diverses opérations booléennes, d'édition, d'action/annulations, etc., le modèle peut présenter de multiples entités, parmi celles-ci certaines peuvent présenter des défauts plus ou moins préjudiciables pour la suite de l'étude.

Afin de vérifier la cohérence de ce modèle géométrique, l'utilisateur est invité à utiliser l'outil « correction de la géométrie ».

Vérifier/Corriger la géométrie

- 1. Cliquer sur l'outil « Correction de la géométrie ».
- 2. Sélectionner une ou plusieurs des entités à vérifier.
- 3. Cliquer sur « Vérifier ».
- 4. Si les cases de la section « Résultats » ne sont pas vierges, alors cliquer « Corriger ».

➡ Cotes

Cette option permet à l'utilisateur d'ajouter une cote linéaire sur la géométrie.

Réglage des éléments des cotes 🛛 🖣 🗙		
Appliquer Montrer		
⊿ Texte		
Label	\checkmark	
Style des flèches		
 Flèches internes Flèches externes 		

Appliquer une cote

- 1. Faire le choix entre une dimension parallèle ou projetée.
- 2. Décocher pour ne pas afficher le label de la dimension.
- 3. Ajuster la position de la flèche de la dimension : interne ou externe.
- 4. Cliquer sur le départ du segment puis sur son extrémité. Placer la dimension (label + flèche) à la position finale souhaitée.

Supprimer ou cacher une cote

- 1. Dans l'arborescence, sélectionner la base des cotes.
- 2. Clic droit sur la dimension à cacher ou supprimer.
- 3. Sélectionner "Cacher" ou "Supprimer".

6. Définition du maillage

La génération du maillage nécessite 2 étapes pour les blocs surfaciques ou 1D.

Le maillage d'un bloc 1D nécessite :

- 1. Le découpage de cet élément,
- 2. La création de l'élément 1D.

Le maillage d'un bloc surfacique nécessite :

- 1. Le découpage de ses contours,
- 2. La création du maillage surfacique.

Il est conseillé de mailler avec une densité forte dans les zones à forts gradient de contraintes.

ⁿ Découpages par nombre d'intervalles

Cet outil permet de définir le nombre de d'intervalles (côtés d'éléments) de longueurs égales souhaité sur les lignes sélectionnées du modèle.

Définir les découpages par nombre d'intervalles

- 1. Sélectionner l'ensemble des lignes pour lesquelles on souhaite affecter un découpage.
- 2. Activer l'outil « Découpages par nombre d'intervalles ».
- 3. Définir le nombre d'intervalles souhaité en cliquant sur l'un des nombres prédéfinis dans la boîte de dialogue.
- 4. « Appliquer » pour réaliser l'affectation des découpages.

Récupérer le nombre d'intervalles affecté sur une frontière donnée

- 1. Activer l'outil « Découpages par nombre d'intervalles ».
- 2. Cliquer à l'aide du bouton droit de la souris sur la ligne considérée. Le nombre d'intervalles affecté sur la frontière considérée est affiché dans la boîte de dialogue.

d 1 d 1

Découpages par distance

Cet outil permet de définir le nombre d'intervalles souhaité sur les lignes sélectionnées du modèle par la donnée d'une longueur « d ».

Pour chaque ligne, le nombre d'intervalles affecté est calculé de façon à ce que la longueur de chacun d'eux soit la plus proche possible de la longueur « d » définie.

Définir les découpages par distance

- 1. Sélectionner l'ensemble des lignes pour lesquelles on souhaite affecter un découpage.
- 2. Activer l'outil « Découpages par distance ».
- 3. Définir la distance « d » considérée dans la boîte de dialogue.
- 4. Activer les boutons « Appliquer » ou « Valider » pour réaliser l'affectation des découpages.

Récupérer la longueur affectée sur une frontière donnée

- 1. Activer l'outil « Découpages par distance ».
- 2. Cliquer à l'aide du bouton droit de la souris sur la ligne considérée. La distance affectée sur la frontière considérée est affichée dans la boîte de dialogue.

Notons ici que le logiciel affectera toujours la distance la plus proche possible de la consigne utilisateur.

n/p

Découpages variables

Cet outil permet la définition de découpages de longueur variable sur une ligne donnée. Les caractéristiques du découpage à affecter sont déterminées par la fourniture des deux données cidessous.

- Nombre total d'intervalles
- Pas de progression géométrique

De manière générale, la procédure d'utilisation de cet outil repose ainsi sur la séquence ci-dessous.

Affecter un découpage variable sur une frontière

Deux méthodes sont proposées.

Nombre d'intervalle / Pas

- 1. Définir le nombre d'intervalles et le pas de progression.
- 2. Cliquer sur la ligne considérée pour affecter le découpage ainsi défini et préciser de plus la position du premier intervalle.

Notons ici que l'affectation à une sélection multiple est impossible (pas de bouton « Appliquer ») dans la mesure où la désignation d'un contour à la souris est utilisée pour définir la position du « premier intervalle » sur la ligne considérée.

Premier / dernier intervalle

- 1. Définir la longueur du premier intervalle et celle du dernier intervalle.
- 2. Cliquer sur la ligne considérée pour affecter le découpage ainsi défini et préciser de plus la position du premier intervalle.

Influence de la position du point cliqué

Option « Propager la densité »

1. Dans le cadre d'un contour rectangulaire (4 segments), activer cette option propage automatiquement la densité définie précédemment aux segments opposés.

Récupérer le découpage variable affecté sur une frontière donnée

- 1. Activer l'outil « Découpages variables ».
- 2. Cliquer à l'aide du bouton droit de la souris sur la ligne considérée. Le nombre d'intervalles affecté sur la frontière considérée est affiché dans la boîte de dialogue.

• Maillage des blocs 1D

Cet outil permet le maillage des blocs 1D sélectionnés. L'activation de cet outil entraîne l'affichage d'une boîte de dialogue permettant à l'utilisateur de choisir le type d'interpolation (linéaire ou quadratique) désiré pour les éléments générés.

Une flèche indiquant l'orientation de chaque élément 1D est représentée au centre de chaque segment support.

Il est possible d'inverser l'orientation proposée ici par défaut grâce à l'outil « Orientation éléments 1D ».

Mailler des blocs 1D

- 1. Sélectionner l'ensemble des blocs 1D à mailler.
- 2. Activer l'outil « Eléments 1D »
- 3. Définir le type d'interpolation (linéaire ou quadratique) des éléments à générer.
- 4. « Appliquer » pour mailler les blocs 1D considérés.

Cet outil permet l'inversion de l'orientation de l'ensemble des blocs 1D sélectionnés. La nouvelle orientation associée aux éléments 1D sélectionnés est visualisée de manière graphique.

L'orientation des éléments 1D a une influence sur le signe des résultats dans les poutre et barres.

Après inversion

Changer l'orientation des blocs 1D

- 1. Sélectionner l'ensemble des blocs 1D dont on souhaite changer l'orientation.
- 2. Activer l'outil « Orientation blocs 1D ».
- 3. « Appliquer » pour réaliser l'opération considérée.

Maillage de blocs surfaciques

Cet outil permet la réalisation automatique du maillage des blocs surfaciques sélectionnés.

Les procédures de maillages utilisées permettent la prise en compte de découpages de longueurs variables. En un point donné P de la région surfacique à mailler, l'algorithme de maillage doit déterminer la taille « optimale » ρ de l'élément à générer.

Cette taille ρ dépend de la longueur de chacun des "segments" ρ_i constituant les bords extérieurs et intérieurs de la région surfacique à mailler et de la distance d_i entre le point P et le segment considéré. De manière schématique, nous pouvons écrire :

$$\rho(x, y) = f(\rho_i, \frac{1}{d_i^N})$$

Dans l'expression ci-dessus, nous voyons intervenir l'exposant N affecté à la distance reliant le point P à un segment donné. Cet exposant N peut prendre les valeurs suivantes :

- N = 1 : Fonction linéaire
- N = 2 : Fonction carré
- N = 3 : Fonction cubique

L'utilisateur peut ici intervenir sur la procédure de maillage utilisée en choisissant l'une des trois fonctions définies ci-dessus (Voir outil : Préférences). De manière schématique, nous pouvons dire que les maillages seront d'autant plus « fins » au voisinage des segments de faible taille que le degré de la fonction est élevé.

La fonction "carré" donnant de très bons résultats dans la plupart des cas est ici choisie par défaut.

Maillage obtenu avec la « fonction carré »

L'activation de cet outil entraîne l'affichage d'une boîte de dialogue permettant le réglage des éléments suivants :

- Type d'interpolation des éléments générés : L'utilisateur peut ici choisir si les triangles ou quadrilatères générés auront une interpolation linéaire (triangles à trois nœuds et quadrilatères à quatre nœuds) ou quadratique (triangles à six nœuds ou quadrilatères à huit nœuds).
- Type des éléments générés : L'utilisateur peut ici choisir le type des éléments générés (triangle, quadrangle ou indifférent).

Notons ici que le choix « quadrangle » ne sera respecté que pour les régions surfaciques dites « régulières ». Par région régulière, nous entendons ici une région surfacique satisfaisant les conditions suivantes.

- La région est constituée par quatre frontières
- Les nombres d'intervalles (découpages) sur les frontières opposées sont identiques
- L'angle entre deux frontières adjacentes est inférieur à une valeur donnée alim; valeur fixée ici à 120 degrés.

Maillage en éléments quadrangles de régions régulières

Réaliser le maillage de blocs surfaciques

- 1. Sélectionner l'ensemble des régions surfaciques que l'on souhaite mailler.
- 2. Activer l'outil « Maillage de régions surfaciques ».
- 3. Définir le type d'interpolation (linéaire ou quadratique) des éléments à générer.
- 4. Définir le type des éléments générés (triangle, quadrangle ou indifférent).
- 5. Sélectionner le type de mailleur surfacique : Natif ou NETGEN
 - Si "Natif" est sélectionné, alors le remplissage est régi par le "Procédé de maillage par remplissage" (réglage dans "Préférences de l'étude")
 - Si NETGEN est sélectionné, alors l'option de remplissage est le facteur
 "Transition du maillage" de dense (valeur = 0) à large (valeur = 1).
- 6. « Appliquer » pour réaliser le maillage des régions surfaciques sélectionnées.

Réaliser le maillage de blocs surfaciques avec ancrages

Cette opération nécessite que les blocs 1D considérés aient préalablement été maillés.

- 1. Sélectionner l'ensemble des blocs 1D définis comme ancrages. Les mailler avec l'outil 📏 "Maillage des blocs 1D".
- 2. Sélectionner l'ensemble des blocs surfaciques à mailler.
- 3. Activer l'outil « Maillage de régions surfaciques ».
- 4. Définir le type d'interpolation (linéaire ou quadratique) des éléments à générer.
- 5. Définir le type des éléments générés (triangle, quadrangle ou indifférent).
- 6. « Appliquer » pour réaliser le maillage des régions surfaciques sélectionnées.
- Noter que le type d'interpolation (quadratique ou linéaire) doit être le même pour les blocs surfaciques et 1D.

Propriétés du maillage

L'activation de cet outil entraîne l'affichage d'une boîte de dialogue présentant les principales caractéristiques du maillage affiché (nombre de nœuds, d'éléments, par type...).

Les propriétés affichées sont mises à jour en fonction des parties du maillage affichées.

P	Propriétés du maillage 🛛 📮 🗙		
A	ctualiser Vérif, des éléme	nts	
Δ	Blocs modélisés		
	Nombre de blocs	0	
Taille maillage			
	Nombre de groupes	0	
	Nombre total de noeuds	0	
	Nombre total d'éléments	0	
	Eléments 1D	0 (-)	
	Eléments surfaciques	0 (-)	
Δ	Propriétés du maillage		
	Aire [m2]	0.000	

(i) Informations sur blocs

Cette option permet la visualisation des propriétés « maillage » et attributs du bloc cliqué à l'aide du bouton droit de la souris. Il permet également la modification éventuelle du nom et de l'attribut de couleur.

L'activation de cette fonction entraine l'affichage de la boîte de dialogue suivante.

Modifier la couleur et le nom d'un bloc

- 1. Cliquer à l'aide du bouton droit de la souris sur le bloc considéré. Les propriétés et attributs du bloc considéré sont affichés dans la boîte de dialogue.
- 2. Modifier si nécessaire le nom du bloc considéré.
- 3. Modifier si nécessaire la couleur du bloc considéré.
- 4. « Appliquer » pour prise en compte de ces modifications.

P	ropriétés	ą ×		
4	ppliquer Montrer			
Δ	Général			
	Nom	Surf_1		
	Libellé	1		
	Туре	1		
	Palette de couleurs	6699CC		
Δ	Géométrie			
	Points	4		
	Contours	4		
	Faces	1		
	Longueur [m]	6.000		
	Aire [m2]	2.240		
4 Maillage				
	Nombre d'éléments	2		
	Ordre de l'élément	1		
	Type d'éléments	TRIA3;		

7. Notion de problème physique élémentaire

CESAR intègre un grand nombre d'algorithmes traitant divers problèmes physiques indépendants ou couplés.

Physiques élémentaires disponibles

Le tableau ci-dessous définit les problèmes physiques élémentaires associés à chaque module de calcul pour un domaine d'application donné

Module	Fonction	Physiques élémentaires			
Domaine d'applice	Domaine d'application : Statique				
LINE	Résolution d'un problème linéaire par méthode directe.	Mécanique			
MCNL	Résolution d'un problème de mécanique à comportement non linéaire.	Mécanique			
TCNL	Résolution d'un problème de contact entre solides élasto- plastiques.	Mécanique			
Domaine d'applice	ation : Dynamique				
DYNI	Recherche de la réponse à une sollicitation dynamique par intégration directe pour des structures élastiques linéaires.	Mécanique			
MODE	Recherche de modes propres : valeurs et vecteurs propres.	Mécanique			
SUMO	Recherche de la réponse à une sollicitation dynamique par superposition modale.	Mécanique			
LINC	Recherche de la réponse à une sollicitation harmonique avec amortissement (résolution d'un problème linéaire en variables complexes).	Mécanique			
LINH	Recherche de la réponse à une sollicitation harmonique sans amortissement.	Mécanique			
FLAM	Recherche de modes de flambement.	Mécanique			
Domaine d'applice	ation : Hydrogéologie				
DTNL	Résolution d'un problème d'hydrogéologie transitoire non linéaire.	Hydrogéologie			
NSAT	Résolution d'un problème d'écoulement en milieu poreux non saturé (régime transitoire).	Hydrogéologie			
LINE	Résolution d'un problème d'hydrogéologie en régime permanent.	Hydrogéologie			
Domaine d'application : Thermique					
DTNL	Résolution d'un problème de thermique transitoire non linéaire.	Thermique			
LINE	Résolution d'un problème de thermique en régime permanent.	Thermique			

Domaine d'application : Béton au jeune âge				
ΤΕΧΟ	Calcul d'un champ de température se développant dans une Thermique pièce en béton au cours de la prise (régime transitoire).			
MEXO	Évolution des contraintes dans le béton au jeune âge.	Mécanique		
Domaine d'application : Consolidation				
CSNL	Résolution d'un problème de consolidation de matériaux élastoplastiques saturés.	Mécanique Hydrogéologie		
Domaine d'application : Problèmes couplés				
MPNL	Résolution d'un problème d'évolution non linéaire en milieux poreux avec couplage thermique (thermo-poro-plasticité).	Mécanique Pression Thermique		

Contenu de chaque problème élémentaire

Associés au choix du module de calcul, l'utilisateur affectera :

- Des propriétés matérielles,
- Des initialisations,
- Des conditions aux limites,
- Des chargements.

Dans le cas particulier où le domaine d'application associé au modèle considéré est de type « Problèmes couplés », les initialisations des paramètres, conditions aux limites et cas de charges sont associés à un ou plusieurs « problèmes physiques élémentaires ».

A titre d'exemple, la résolution d'un problème de consolidation (Module CSNL) suppose la prise en compte des problèmes physiques élémentaires « Mécanique » et « Hydrogéologie ». Il faudra ainsi imposer des conditions aux limites sur les paramètres « Déplacements » et « Charges hydrauliques ». On pourra imposer des chargements de type « Mécanique » ou « Hydrogéologie » (exemple ci-dessous).

Aussi l'interface s'adaptera aux choix de l'utilisateur pour proposer les fonctionnalités associées.

Compatibilité des "physiques"

CESAR permet à l'utilisateur de combiner plusieurs physiques élémentaires pour un même modèle de calcul. Des adaptations sont toutefois nécessaires pour assurer la compatibilité des physiques élémentaire entre elles.

Par exemple, on pourra assurer une compatibilité entre modules MCNL et DTNL.

Module	Mécanique	Hydrogéologie/Thermique	
Surface	Actif	Actif	
1D	Actif	Inactive	
Interface	Actif	Perméable / Imperméable	
		Conducteur / Isolant	
Spéciaux	Actif	Inactif	

8. Définition des « modèles »

Gestion des « modèles »

L'arborescence « Modèles » proposée sur la partie droite de l'écran présente de fait les différents « domaines de calcul » pouvant être réalisés potentiellement par CESAR. Cette arborescence sera utilisée pour la création et l'édition des « modèles » de l'étude.

Elle se présente initialement comme indiqué ci-dessous :

MODELES
 STATIQUE
 DYNAMIQUE
 HYDROGEOLOGIE
 THERMIQUE
 BETON AU JEUNE AGE
 CONSOLIDATION
 PROBLEMES COUPLES

(+) Calculs statiques

Cette « Branche » contient l'ensemble des modèles associés à des calculs statiques. Elle permet également le traitement du problème classique de définition de phases de travaux.

(+) Dynamique

Cette « Branche » contient l'ensemble des modèles associés à des calculs dynamiques (modes propres, réponse dynamique fonction du temps...)

(+) Hydrogéologie

Cette « Branche » contient l'ensemble des modèles créés pour résoudre un problème d'hydrogéologie.

(+) Thermique

Cette « Branche » contient les modèles créés pour résoudre un problème de thermique. TEXO n'est pas compris dans la liste des outils admissibles ici.

(+) Béton au jeune âge

Cette « Branche » contient les modèles (TEXO-MEXO) créés pour résoudre un problème de béton au jeune âge.

(+) Consolidation

Cette « Branche » contient les modèles créés pour résoudre un problème couplé de type consolidation

(+) Problèmes couplés

Cette « Branche » contient les modèles créés pour résoudre un problème couplé de type « thermo-poromécanique ».

Le fait de cliquer à l'aide du bouton droit de la souris sur l'un des items de l'arborescence initiale entraîne l'affichage d'un menu contextuel proposant la création d'un nouveau modèle. L'activation de cet item de menu entraîne l'affichage d'une boîte de dialogue permettant de définir les caractéristiques principales du modèle à générer.

🔎 Nature du modèle		×
Définition du modèle		
Nom du modèle	Model1	
Commentaire		
Domaine	STATIQUE	-
Solveur	MCNL	•

On définira en particulier :

- Le nom utilisateur donné au domaine
- Le domaine d'application (Statique, Dynamique, ...)
- Le « solveur » associé (LINE, MCNL, ...)

Nous détaillerons dans le paragraphe suivant les autres caractéristiques définissant un modèle et dépendant du contexte.

Après validation de cette boîte de dialogue de définition du modèle, l'arborescence est modifiée par exemple comme suit :

L'arborescence présentée ci-dessus permet également la réalisation des opérations élémentaires suivantes :

1) Clic droit sur « Nom d'un modèle » donne accès au menu contextuel :

- Propriétés générales (Mise à jour des propriétés générales du modèle)
- Activation modèle (Le modèle considéré devient modèle courant)
- Supprimer modèle
- Copier modèle (Création d'un modèle copie du modèle courant)
- Définir les paramètres du calcul (paramètres du solveur considéré)

2) Clic droit sur paragraphe « Conditions aux limites » donne accès au menu contextuel :

- Ajouter « Ensemble de conditions aux limites » (si permis par le solveur courant)
- 3) Clic droit sur paragraphe « Cas de charge » donne accès au menu contextuel :
 - Ajouter « Cas de charge » (si permis par le solveur courant)

4) Clic droit sur un ensemble de « conditions aux limites ou « Cas de charge » donne accès au menu contextuel :

- Activer ensemble (L'ensemble considéré devient l'ensemble courant (actif) dans la définition des conditions aux limites ou des cas de charges.
- Supprimer ensemble (si permis par le solveur courant)
- Supprimer partage (si l'ensemble considéré est partagé (Voir paragraphe ci-dessous))

Notons également qu'il est possible de changer les noms des ensembles de propriétés, conditions aux limites et cas de charge en a) cliquant sur l'ensemble considéré b) Activer la touche F2 du clavier.

Propriétés d'un modèle

Nous avons vu que la procédure de création d'un modèle entraînait l'affichage d'une boîte de dialogue permettant la définition des « propriétés » du modèle. Cette boîte de dialogue est également accessible à l'utilisateur après création par clic bouton droit sur le nom du modèle considéré.

Outre le nom du modèle, cette boîte de dialogue permet tout d'abord le choix du « domaine d'application » et du « solveur » associé (cf. Chapitre « Notion de problème physique élémentaire »).

La liste des domaines d'application et des solveurs proposés est limitée par la licence CESAR activée.

Définition du modèle	
Nom du modèle	Model1
Commentaire	
Domaine	STATIQUE
Solveur	MCNL
Description solveur	Résolution d'un problème de mécanique comportement non linéaire. (phasage, interfaces, plasticité)
Déformation plane C Axisymétrique C Contrainte plane	
Description dimension 2D	Deformation plane: Géométrie 2D. Une dimension du problème est très grande comparaison des deux autres. Le long d cette direction, les matériaux, forces et autres conditions aux limites sont consta ATTENTION : on considère un tranche d' de profondeur penser à adapter les secti
 Phasage Initialisation des paramètres Reprise 	
Description du type d' initialisation	Séquence de calculs enchainés. L'état de contraintes de la phase n-1 initialise l'éta de contrainte de la phase n . Les champs déplacements sont cumulés ou réinitiali (réglage dans « Paramètres du calcul »).
Numéro de la phase	1
 Contraintes géostatiques Autre champ de contraintes initiales 	
Type de contraintes initiales	La stratigraphie du sol est horizontale. Le poids volumique du sol et le coefficient poussée latérale des terres Ko permetter d'établir les contraintes verticales et horizontales.
Définition des co	ntraintes géostatiques

Dimension du modèle

Concevoir un modèle de calcul 2D passe généralement par poser une hypothèse initiale sur la dimension du problème traité.

On propose 3 types de calcul 2D :

a) Déformation plane

L'hypothèse des déformations planes permet de ramener une structure à trois dimensions (x, y, z) à une structure à deux dimensions (x, y) dans le cas où les conditions suivantes sont vérifiées :

- une dimension « longitudinale » portée selon z est nettement supérieure aux deux autres, et un encastrement à ses deux extrémités (toujours selon cette dimension longitudinale)

ou une dimension « longitudinale » semi-infinie,

- des sollicitations 'essentiellement' exercées dans le plan de coupe (x, y).

b) Contrainte plane

L'hypothèse des contraintes planes permet de ramener une structure à trois dimensions (x, y, z) à une structure à deux dimensions (x, y) dans le cas où les conditions suivantes sont vérifiées :

- Configuration plane et/ou mince (une dimension est très inférieure aux deux autres) et présentant naturellement un plan de coupe à deux dimensions,
- Absence de forces externes s'exerçant perpendiculairement à ce plan de coupe.

c) Axisymétrie de révolution

L'hypothèse d'axisymétrie permet de ramener une structure à trois dimensions (x, y, z) à une structure à deux dimensions (x, y) dans le cas où les conditions suivantes sont vérifiées :

- symétrie dans la topologie,
- symétrie dans les conditions aux limites,
- symétrie dans les sollicitations surfaciques et volumiques.

Dans le cas d'une symétrie de révolution, les équations de la mécanique (fluide, structure ou thermique) doivent être exprimées dans le repère de coordonnées cylindriques (r, θ , z), avec indépendance des variables par rapport à la coordonnée azimutale θ .

Exemple d'une semelle circulaire

Exemple d'un pieu

Type d'initialisation

Après avoir défini le domaine d'utilisation et le solveur associé, il convient de choisir pour certains « solveurs » le « type d'initialisation » considéré.

Dans certains cas, il est en effet nécessaire de définir la valeur initiale d'un certain nombre de paramètres. A titre d'exemple, pour pouvoir réaliser une analyse dynamique par intégration directe (Module de calcul DYNI), il convient de définir la valeur initiale des champs de déplacement, champs de vitesse et champs de contraintes.

De manière générale, quatre types ou méthodes d'initialisations peuvent ici être proposées à l'utilisateur.

a) Pas d'initialisation nécessaire

Dans ce cas particulier, aucune information complémentaire n'est réclamée à l'utilisateur.

b) Initialisation paramètres

Le choix de cette méthode permet la définition « directe » des paramètres initiaux. Cette définition est réalisée dans le module « Initialisation des paramètres » dont les fonctionnalités sont décrites dans le prochain chapitre.

c) Reprise simple

Cette méthode d'initialisation est choisie quand le modèle considéré constitue de fait une « continuation » de calculs définis dans un modèle « antérieur ». Si nous reprenons l'exemple d'une analyse dynamique par intégration directe, nous pouvons ainsi imaginer qu'à l'aide d'un modèle noté ici « A », nous analysions le comportement d'une structure entre les temps 0 et T. Le comportement de

la structure entre les instants T et T+T' peut être réalisé à l'aide d'un modèle noté ici « B ». Pour ce dernier modèle, il sera ainsi indiqué de réaliser une initialisation de type « Reprise simple ».

Comme nous le verrons de manière plus détaillée dans le chapitre « Initialisation paramètres », le choix de cette méthode d'initialisation nécessitera la simple donnée du nom du fichier créé par le modèle « A » et contenant la valeur des paramètres à l'instant T.

d) Phasage

La méthode d'initialisation de type « Phasage » peut être considérée comme une extension de la méthode de type « Reprise simple ». Cette méthode introduit simplement un processus d'initialisation prédéfini permettant de simplifier la tâche de l'utilisateur.

Dans le cas où la méthode d'initialisation choisie est "Phasage", un numéro d'ordre N est ainsi automatiquement affecté au modèle considéré en fonction du nombre N-1 de modèles déjà créés avec une initialisation de type « Phasage ».

Le processus d'initialisation associé à chaque modèle (chaque phase) est alors défini comme indiqué dans le tableau ci-dessous.

Phases	Initialisations	
1	Déplacements initiaux : Nuls	
	Contraintes initiales : Nulles ou de type géostatique	
2	Déplacements initiaux : - Nuls si les contraintes initiales définies en phase 1 sont nulles	
	 Résultats de la phase 1 si les contraintes initiales définies en phase 1 sont de type « géostatique » Contraintes initiales : Résultats de la phase 1 	
N (N>2)	Déplacements initiaux : Résultats de la phase N-1 Contraintes initiales : Résultats de la phase N-1	

Nous voyons ainsi à l'aide du tableau ci-dessus que l'utilisateur doit en fait simplement choisir le type de contraintes initiales pour le seul modèle correspondant à la phase 1. Pour l'ensemble des autres modèles, les initialisations sont définies de manière automatique à partir du moment où la méthode d'initialisation choisie est « Phasage ».

Contraintes initiales

Pertinente en études géotechniques, la définition de l'état de contraintes initiales est nécessaire pour une bonne estimation de l'état de contraintes dans le sol avant travaux. Il peut avoir une grande influence sur les résultats (déplacements ou contraintes).

Deux méthodes de génération des contraintes initiales sont proposées :

a) Contraintes géostatiques

Les couches de sol sont horizontales. Les contraintes verticales et horizontales sont définies par la donnée du poids volumique (déjaugé ou non en fonction de la nappe) et de coefficients de poussées latérales.

b) Champs de contraintes général

L'initialisation du champ de contraintes est réalisée par le chargement gravitaire des sols secs (contraintes totales) ou saturés en fonction de la position de la nappe (contraintes effectives). D'autres options sont proposées de sorte que l'utilisateur puisse modéliser correctement cet été initial important pour la suite de la modélisation.

Le « partage » des ensembles (propriétés, conditions aux limites, charges) entre plusieurs modèles

L'arborescence proposée ci-dessus permet également le partage éventuel « d'ensembles » entre plusieurs modèles. Supposons à titre d'exemple que nous souhaitions utiliser le même ensemble de propriétés pour un modèle de type « calculs statiques » standard et un modèle de type « Dynamique (Modes propres de vibrations) ». L'arborescence se présente comme suit :

Pour utiliser l'ensemble de propriétés « [1] Properties » associé au modèle « Calculs statiques / Model1 » dans le modèle « Dynamique / Model2 », il suffira de faire « glisser » (drag and drop) l'item « [1] Properties » sur l'ensemble « [2] Properties ».

Cette action entraîne la proposition d'une boîte de dialogue proposant les trois choix ci-dessous :

- Copier : Si cette option est choisie, l'ensemble de propriétés « [2] Properties » est de fait initialisé avec les données contenues dans l'ensemble « [1] Properties ». Après cette action les deux ensembles de données demeurent indépendant et la modification de l'un n'a aucune influence sur l'autre.
- Partager : Si cette option est choisie, les deux modèles « partagent » le même ensemble de propriétés. Dans ce cas la modification des propriétés dans un modèle sera ainsi immédiatement prise en compte dans l'autre modèle.
- Annuler : L'action de copie partage est ici annulée.

Nous voyons sur l'image ci-dessus que les modèles « Model1 » et « Model2 » utilisent maintenant le même ensemble de propriétés « [1] Properties ». Un symbole (ici) indique que l'ensemble considéré est partagé entre plusieurs modèles. Cette procédure de partage est également utilisable pour les ensembles de conditions aux limites et les cas de charge de façon similaire.

L'attribut « Ensemble partagé » pourra être « levé » à tout moment. Un clic à l'aide du bouton droit de la souris sur l'ensemble partagé considéré entraînera l'affichage d'un menu contextuel proposant en sus des options de menu définies dans le paragraphe ci-dessus l'item « Supprimer partage ». L'activation de cette fonctionnalité entraînera la création d'un nouvel ensemble initialisé à l'aide de l'ensemble précédemment partagé.

Modélisation des phases de construction en analyses géotechniques

La modélisation des phases de construction est importante pour la représentation correcte des mécanismes et une analyse précise des contraintes et déformations dans les structures. Chaque étape de construction sera définie comme un nouveau modèle.

Afin de relier les étapes de construction, les calculs seront initialisés avec le champ de contraintes calculé à la phase précédente. Ainsi, on suit le processus suivant :

Modèles	Contraintes initiales	Chargements	Contraintes calculées
Phase 1	σ_0 (défini par l'une des 3 méthodes décrites dans la paragraphe suivant)	ΔF_1	σ_1
Phase 2	σ1	ΔF_2	σ_2
Phase n	<i>σ</i> n-1	ΔFn	σ _n

Il est important de noter ici que chaque modèle est déséquilibré par un chargement additionnel. Les chargements précédents sont déjà pris en compte dans les champs de contraintes calculés utilisés pour initialiser le nouveau modèle.

Si l'utilisateur choisit le type "Phasage", le processus sera automatiquement réalisé :

Modèles	Contraintes initiales	Chargements	Contraintes calculées
Phase 1 Initialisation = Phasagae	σ ₀ (défini par l'une des 3 méthodes)	ΔF_1	Stockage automatique du champ de contraintes σ_1
Phase 2 Initialisation = Phasagae	Initialisation automatique du champ de contraintes σ1	ΔF ₂	Stockage automatique du champ de contraintes σ ₂
Phase n Initialisation = Phasagae	Initialisation automatique du champ de contraintes σ_{n-1}	ΔFn	Stockage automatique du champ de contraintes σ _n

Si l'utilisateur choisit l'option "Initialisation des paramètres", le processus sera défini par l'enchainement des opérations suivantes :

Modèles	Contraintes initiales	Chargements	Contraintes calculées
Phase 1 Initialisation = Initialisation des paramètres	σ₀ construit avec : •\$i Contraintes uniformes par bloc • <t< td=""><td>ΔF1</td><td>Stockage pour reprise = fichier, Phase1.rst</td></t<>	ΔF1	Stockage pour reprise = fichier, Phase1.rst
Phase 2 Initialisation = Reprise	Nom du fichier = Phase1.rst	ΔF_2	Stockage pour reprise = fichier, Phase2.rst
Phase n Initialisation = Reprise	Nom du fichier = Phase(n-1).rst	∆F _n	Stockage pour reprise = fichier, Phase(n).rst

Activation / désactivation de blocs pendant le phasage de construction

Les blocs ayant les mêmes propriétés et états d'activation pendant le calcul vont pouvoir être activés ou inactivés pendant le calcul phasé.

Exemple de séquence pour la construction d'un tunnel.

Phase 0 : Contraintes initiales	Phase 1 : Excavation de la section du tunnel	Phase 2 : Mise en place des blocs de revêtement
Blocs 1, 2 & 3 sont actifs.	Desactivation des blocs 2 & 3.	Activation du bloc 2.
Propriétés des blocs 1, 2, 3 : paramètres de sol.	Propriétés du bloc 1 : paramètres de sol.	Propriétés du bloc 1 : paramètres de sol.
		Proprietes du bloc 2: paramètres de béton
Champ de contraintes initiales : contraintes géostatiques	Champ de contraintes initiales : {ơ0}	Champ de contraintes initiales : $\{\sigma 1\}$

Chargement : aucun	Chargement 1 : Forces d'excavations sur les limites de la section du tunnel → Forces d'excavation 🛠	Chargement 2 : Poids propre du bloc revêtement → Forces de pesanteur
Résultats : { σ 0}, { $arepsilon$ }, { $arepsilon$ 0}, { $arepsilon$ 0}, { $arepsilon$ 0}, {	Résultats : { σ 1}, { $arepsilon$ 1}, { $arepsilon$ 1}, { u 1}	Résultats : {σ2}, {ε2}, {u2}

Champs de contraintes initiales pour les analyses géotechniques

Dans le paragraphe suivant, on présente les calculs phasés pour simuler le phasage de construction d'un ouvrage. Il, est conseillé d'isoler le champ de contraintes initiales dans le but de :

- contrôler le champ de contraintes initiales calculé
- pouvoir le modifier sans intervenir sur la suite des phases de construction.

On propose 3 procédures différentes pour calculer le champ de contraintes initiales :

- "méthode K0", contraintes géostatiques dans des couches horizontales
- "méthode poids propre des terres", adaptable à toute configuration de sols,
- "méthode WTB", prise en compte de la position de la nappe hydrostatique.

"Méthode K0" : contraintes géostatiques dans des couches horizontales

La méthode K0 doit être utilisée dans le contexte suivant :

- Toutes les couches de sol sont horizontales,
- Tous les matériaux des couches de sol sont homogènes.

Les paramètres utilisés sont définis dans la boîte **Contraintes géostatiques** lors de la définition du premier modèle du phasage :

où Ko_x et Ko_y sont les coefficients de poussées des terres dans les directions x et y respectivement.

Ainsi, on obtient en tout point du massif de sol :

- Contrainte verticale $\sigma_v = \gamma \times h$
- Contrainte horizontale $\sigma_h = \mathrm{Ko} \times \sigma_\mathrm{v}$

Le processus d'initialisation dans le phasage de construction est décrit dans la tableau suivant :

Modèles	Contraintes initiales	Chargements	Contraintes calculées
Phase 0 Initialisation = Phasage	Ξ σ Contraintes géostatiques	-	Stockage automatique du champ de contraintes
Phase 1 Initialisation = Phasage	Initialisation automatique du champ de contraintes à partir de Phase 0	Chargement 1	Stockage automatique du champ de contraintes

"Méthode poids propre des terres", adaptable à toute configuration de sols

La "méthode poids propre des terres" doit être utilisée dans le contexte suivant :

- toutes les couches de sol ne sont pas horizontales,
- les matériaux des couches de sol ne sont pas homogènes.

Les paramètres utilisés sont les paramètres élastiques définis dans l'étape **PROPRIETES** : densité, coefficient de Poisson.

Ainsi, on obtient en tout point du massif de sol :

- Contrainte verticale $\sigma_v = \rho \times g \times z$ - Contrainte horizontale $\sigma_h = \frac{v}{1-v} \times \sigma_v$

Le processus d'initi	ialisation dans le phasac	e de construction est	décrit dans la tableau suivant

Modèles	Contraintes initiales	Chargements	Contraintes calculées
Phase 0 Initialisation = Phasage	-	Poids propre des couches de sol avec l'outil Forces de pesanteur	Stockage automatique du champ de contraintes
Phase 1 Initialisation = Phasage	Initialisation automatique du champ de contraintes à partir de Phase 0	Chargement 1	Stockage automatique du champ de contraintes
•••			

"Méthode WTB", prise en compte de la position de la nappe hydrostatique

La "méthode WTB" est à utiliser dans le contexte suivant :

toutes les couches de sol ne sont pas horizontales,

- les matériaux des couches de sol ne sont pas homogènes.
- une nappe hydrostatique est présente.

Les paramètres utilisés sont définis à l'étape CHARGEMENT avec les outils Z Position de nappe et

Définition des blocs affectés par le changement de nappe.

Ainsi, on obtient en tout point du massif de sol :

- Contrainte verticale $\sigma_v = (\gamma_s - \gamma_w) \times z$ sous le niveau de nappe- Contrainte horizontale $\sigma_v = \gamma_d \times z$ au-dessus du niveau de nappe- Contrainte horizontale $\sigma_h = \frac{v}{1-v} \times \sigma_v$

Le processus d'initialisation dans le phasage de construction est décrit dans la tableau suivant :

Modèles	Contraintes initiales	Chargements	Contraintes calculées
Phase 0 Initialisation = Phasage	-	Contraintes liées à la présence de la nappe, outils et	Stockage automatique du champ de contraintes
Phase 1 Initialisation = Phasage	Initialisation automatique du champ de contraintes à partir de Phase 0	Chargement 1	Stockage automatique du champ de contraintes

9. Définition des propriétés du modèle

Définition des tables de propriétés

Pour un modèle donné, nous devons définir pour chacun des blocs du modèle un « ensemble de propriétés » (Caractéristiques mécaniques, hydrauliques, géométriques, ...). Nous utiliserons ici l'expression « table de propriétés » pour définir cet ensemble de paramètres.

Une table de propriétés comprendra potentiellement l'ensemble des paramètres nécessaire pour réaliser tous les types d'analyse permis par le logiciel (Mécanique, thermique, hydraulique, ...). Pour prendre en compte et organiser ces différentes catégories de paramètres, nous considérons qu'une table de propriétés est un ensemble de « sous-tables » ayant chacune un « type » donné. Nous distinguerons par exemple les sous tables :

- Elasticité
- Plasticité
- Hydrogéologie
- Thermique, ...

Dans CESAR, les tables de propriétés associées à une étude sont définies indépendamment de leur affectation à des blocs pour un modèle donné. Il convient ainsi dans un premier temps de constituer une « bibliothèque » contenant les tables de propriétés à utiliser. Cette opération est réalisée par une série d'outils proposée dans l'onglet « Propriétés ».

Le contenu des tables de propriétés dépend essentiellement du type des blocs associés. Pour cette raison, la constitution de la bibliothèque de propriétés est réalisée à l'aide d'une liste d'outils, chaque outil étant spécialisé pour un type de blocs donné. Nous distinguons ainsi :

- Définition des propriétés pour « blocs surfaciques » : Nous distinguerons ici le bloc surfacique « homogène » et le bloc surfacique de type « matériau renforcé ».
- Définition des propriétés pour « blocs 1D ».
- Définition des propriétés pour « blocs interface ».

- Définition des propriétés pour « blocs liaisons ».
- Définition des propriétés pour « blocs multipoints » : Nous distinguerons ici les blocs multipoints de type « relations linéaires » et les blocs multipoints de type « Eléments spéciaux » (L'utilisateur définit les matrices de manière manuelle).

L'activation de chacun de ces outils entraîne l'affichage d'une boîte de dialogue permettant pour le type de blocs considéré les actions suivantes :

- Création d'une nouvelle « table de propriété »
- Edition des caractéristiques d'une « table de propriétés » existante. Notons ici que les modifications réalisées dans la bibliothèque seront automatiquement prises en compte dans tous les modèles utilisant cette table de propriété.
- Suppression d'une « table de propriété »
- Export d'une table de propriété dans une bibliothèque « extérieure » indépendante de l'étude en cours. Cette bibliothèque générale pourra ainsi contenir les tables de propriétés utilisées de manière récurrente dans plusieurs études.
- Import d'une « table de propriété » de la bibliothèque générale vers la bibliothèque courante de l'étude.

Ces actions sont réalisées grâce à la barre d'outils proposée dans la boîte de dialogue considérée.

Propriétés des blocs surfaciques		X
[] 🗎 🖄 🖄 🤆	Nom du jeu de propriétés Elasoil 1	~
Paramètres élastiques	Paramètres élastiques	
Paramètres d'ecoulement Paramètres de couplage	Type E	lasticité linéaire isotrope
Paramètres de plasticité	ρ [Kg/m3] 9	00.000
	E [MN/m2] 5	.000e+00
	ν[] 0	.350

🛨 Créer des tables de propriétés

- 1. Lors de l'ouverture de cette boîte de dialogue, un matériau par défaut est déjà créé. Il convient donc simplement de mettre à jour ces propriétés comme indiqué ci-dessous.
- 2. Définir le nom de la table de propriétés en éditant ce dernier dans la liste déroulante considérée.
- 3. Choisir le type de la sous-table de propriétés à renseigner. Dans l'exemple ci-dessus, nous choisirons par exemple entre « Paramètres élastiques » et « Paramètres de plasticité ». La visibilité des sous-tables i à N dépend des données définies dans les sous tables 1 à i-1. A titre d'exemple, si un matériau de type « élasticité orthotrope » est choisi dans la sous-table « Elasticité », la sous-table « Plasticité » deviendra invisible car incompatible avec ce choix.
- 4. Définir les propriétés associées à la sous-table de propriété ainsi sélectionnée.
- 5. Répéter les étapes 3-4 pour chacune des sous tables proposées dans la boîte de dialogue.
- 6. Cliquer sur le bouton « Nouveau » de la barre d'outils proposée par la boîte de dialogue si l'on souhaite créer une nouvelle table de propriétés. Un nom par défaut apparaissant dans la liste des tables de la bibliothèque est donné. Il suffit alors de répéter la séquence 2 à 4.
- 7. Cliquer sur le bouton « Valider » pour enregistrer les tables de propriétés ainsi créées dans la « bibliothèque de l'étude ».

Modifier les paramètres de table de propriétés

- 1. Choisir la table de propriétés à éditer grâce à la liste déroulante contenant l'ensemble des tables de l'étude.
- 2. Choisir le type de la sous-table de propriétés contenant les paramètres à modifier.
- 3. Mettre à jour les paramètres associés à la sous-table de propriété ainsi sélectionnée.
- 4. Répéter les étapes 3-4 pour chacune des sous tables à modifier proposées dans la boîte de dialogue.
- 5. Cliquer sur le bouton « Valider » pour enregistrer les tables de propriétés ainsi mises à jour dans la « bibliothèque de l'étude ».

Il est important de noter que les changements réalisés ici seront pris en compte sans autre action dans les modèles utilisant les tables de propriétés ici modifiées.

Ø

Exporter les tables de propriétés vers une bibliothèque extérieure

Dans de nombreux cas, il peut s'avérer intéressant de sauvegarder dans une bibliothèque extérieure (indépendante de l'étude en cours) les tables de propriétés utilisées de manière récurrente dans plusieurs études. Pour ce faire, il suffit de suivre la procédure ci-dessous.

- 1. Définir les caractéristiques de la table de propriétés à exporter comme indiqué ci-dessus.
- 2. Activer le bouton « Exporter » de la boîte de dialogue. Cette action entraîne l'affichage d'une boîte de dialogue permettant la définition de l'emplacement et du nom de cette « bibliothèque générale ».
- 3. Après définition de ces informations, cliquer sur le bouton « Enregistrer » de cette boîte de dialogue.

Importer les tables de propriétés à partir d'une bibliothèque extérieure

- Activer le bouton « Importer » de la boîte de dialogue. Cette action entraîne l'affichage d'une boîte de dialogue permettant la définition de l'emplacement et du nom de la « bibliothèque générale » contenant la table de propriétés à importer.
- 2. Le choix de ce nom de fichier entraîne l'affichage d'une boîte de dialogue contenant la liste des tables contenues dans la bibliothèque générale. Choisir la table à importer dans cette liste.
- 3. Cliquer sur le bouton « Valider » pour importer la table de propriétés ainsi choisie dans la bibliothèque de l'étude courante.

Exemple d'import de jeu de données à partir d'une bibliothèque externe

W Voir et éditer toutes les sous tables d'une table de propriétés

Les outils permettant la définition de la bibliothèque de propriétés sont accessibles dans la barre d'outils de l'onglet « Propriétés ». Cette barre d'outils a pour principal objet la définition des propriétés du modèle courant défini dans la liste déroulante associée.

🥬 🗋 🖻	हे 🔠 💷 र 🤤	s 📲 🖉 🔍		
FICHIER	GEOMETRIE	MAILLAGE	PROPRIETES	CON
Model1	•		👂 🏊 🖥	6-
M	odèle	D	éfinition	

Le modèle courant est associé à un domaine spécifique (Statique, Dynamique, Hydrogéologie, ...) et à un solveur dans ledit domaine (LINE, MCNL, MODE, ...).

Pour le modèle courant, seules certaines des « sous-tables de propriétés » seront ainsi utilisées. Pour simplifier la tâche de l'utilisateur, seules les sous-tables utilisées dans le modèle courant sont ainsi proposées pour la définition des paramètres. Il n'en demeure pas moins que l'ensemble des sous-tables d'une table peut être visualisée et éditée à tout moment en suivant la procédure ci-dessous.

- 1. Choisir la table à éditer dans la liste déroulante des tables disponibles.
- 2. Cliquer sur le bouton « Voir toutes les sous-tables » de la boîte de dialogue. L'ensemble des soustables est alors accessible dans la liste proposée sur la gauche de la boîte de dialogue.
- 3. Editer les paramètres de la table de propriétés comme indiqué dans les paragraphes ci-dessus.

Supprimer une table de propriétés

L'activation de ce bouton entraîne la suppression de la table de propriétés courante. Cette action ne sera effective qu'après activation du bouton « Valider » de la boîte de dialogue générale.

Affectation « graphique » des propriétés

Cet outil permet l'affectation classique d'une table de propriétés à l'ensemble des blocs sélectionnés. L'activation de cet outil entraîne l'affichage d'une boîte de dialogue permettant la réalisation de cette opération en suivant la séquence ci-dessous.

Affecter graphiquement les tables de propriétés

- 1. Sélectionner les blocs pour lesquels on souhaite affecter des tables de propriétés.
- 2. Définir dans la grille de dialogue le type de blocs considéré.
- 3. Choisir dans la liste déroulante la table de propriété à considérer. Dans cette liste ne sont ici proposées que les tables de propriétés associées au « type de blocs » choisi ci-dessus.
- 4. Cliquer sur le bouton "Appliquer" pour affecter la table de propriétés aux blocs du type défini sélectionnés.

Vérifier graphiquement l'affectation des tables de propriétés

Deux méthodes sont proposées :

- 1. Choix d'un jeu de propriétés dans la liste des jeux définis puis clic sur « Montrer ».
- 2. Clic droit sur un des blocs du modèle. Si un jeu de propriétés est associé, la grille de dialogue s'actualise en présentant le type de bloc et le jeu de propriétés associé. Si aucun jeu de propriétés n'est associé, la grille de dialogue s'actualise restant vide au niveau du nom de jeu de propriétés.

Affectation « tableau » des propriétés

Cet outil permet l'affectation d'une table de propriétés à une bloc support. L'ensemble des blocs étant listé par type, l'utilisateur se voir proposer en regard de chaque bloc la liste des jeux de propriétés disponibles.

L'avantage pour l'utilisateur est de voir immédiatement l'état de complétude du modèle concernant les propriétés physiques.

6	Appliquer/voir les propiétés de blocs		>	×	
				^	
	Blocs	Propriétés			
	Bloc surfacique				
	Surf_1(1)	Sable #2(2)	•		
	Surf_4(4)	Sable #2(2)	٠		
	Surf_12(12)	Sable #1(1)	٠		
	Surf_13(13)	Sable #1(1)	٠		
	Surf_14(14)	Sable #1(1)	٠		
	Surf_20(20)	Sable #1(1)	٠		
	Surf_21(21) Sable #1(1)				
	Bloc 1D				
	Line_16(16)	Ancrages(4)	٠		
	Line_17(17)	Ancrages(4)	٠		
	Line_18(18)	Ancrages(4)	٠		
	Line_19(19)	Ancrages(4)	٠		
	Line_22(22)	Paroi(3)	٠		
	Bloc interface				
	Cont_30(30)	Paroi/Sable 1 - Frottement(7)	٠		
	Cont_31(31)	Paroi/Sable 1 - Frottement(7)	٠		
	Cont_32(32)	Paroi/Sable 1 - Frottement(7)	٠		
	Cont_33(33)	Paroi/Sable 1 - Frottement(7)			
	Cont_34(34)	Paroi/Sable 1 - Frottement(7)	٠	~	
		Valider Fermer			

Affecter par tableau des propriétés

- 1. Pour chaque bloc, développer la liste des jeux de propriétés disponibles. Sélectionner un jeu de propriétés approprié.
- 2. Répéter l'opération pour l'ensemble des blocs de chaque type (surfacique, 1D, interface...).
- 3. "Valider"

Définition de l'attribut Actif / Inactif

Cet outil permet l'affectation de l'attribut « Actif / Inactif » sur les blocs considérés du modèle. Par défaut, dans un modèle donné, tous les blocs sont considérés actifs. Les blocs inactifs sont visualisés à l'écran avec une couleur spécifique (Gris clair) permettant de les distinguer.

La couleur des blocs inactifs peut être définie dans « Préférences > Affichage > Couleur neutre ».

Affecter l'attribut Actif / Inactif

- 1. Sélectionner les blocs pour lesquels on souhaite modifier l'attribut Actif / Inactif.
- 2. Choisir dans la grille la valeur de l'attribut (Actif ou Inactif) à affecter.
- 3. Cliquer sur le bouton "Appliquer" pour affecter cet attribut aux blocs sélectionnés.

10. Initialisations des paramètres

Introduction

Le fonctionnement de certains modules de calcul réclame la définition de « valeurs initiales ». Dans le cas d'un module de calcul permettant par exemple la résolution d'un problème dynamique, il conviendra ainsi de définir au minimum les déplacements et vitesses initiaux associés à chacun des nœuds du modèle.

Le tableau ci-dessous définit les paramètres à considérer pour chacun des modules de calcul réclamant de telles initialisations.

Module	Déplacement	Vitesse	Contrainte	Charge	Température Pression
MCNL			oui		
TCNL			oui		
DYNI	oui	oui	oui		
sumo	oui	oui	oui		
DTNL				oui	oui
NSAT				oui	
ΤΕΧΟ					oui
MEXO			oui		
CSLI	oui		oui	oui	
MPNL	oui		oui		oui oui

L'activation de ce module est facultative dans la mesure où les paramètres associés au module de calcul considéré ont l'initialisation par défaut définie par le tableau ci-dessous :

Paramètre	Initialisation par défaut
Déplacement	0.
Vitesse	0.
Contraintes	0.
Charge	0.
Température	0.
Pression	0.

L'activation de l'onglet "Initialisation paramètres" entraîne :

- L'affichage d'une boîte à outils permettant l'initialisation des paramètres considérés pour le modèle courant.
- L'affichage dans la zone graphique de l'écran d'une vue représentant le modèle considéré. Notons ici que les paramètres initiaux ne sont pas visualisés explicitement de manière graphique.

FILE	GEOMETRY	ME	SH	PROPER	TIES	INITIAL PARA	METERS	BC	DUNDARY CON	IDITIONS	L	OADS	ANALYS	IS RI	ESU
Model1	• Model	D	splacem	u ents	s	÷ Si+ ↑ ■ Stress	Si	т	⊕ ₽ Temperature	θ	P	P	Pressure	рÞ	

Les outils proposés dans la barre d'outils dépendent de la nature du modèle considéré (cf. Chapitre « Notion de problème physique élémentaire ») conformément au tableau ci-dessous.

Nous récapitulons à suivre les outils considérés potentiellement pour chacun des paramètres considérés.

Paramètre	Outils
Déplacements	 Champ de déplacement d'un solide rigide Lecture champ de déplacement sur fichier
Vitesses	Champ de vitesse d'un solide rigide
Contraintes	 Tenseur de contraintes uniformes par groupes Contraintes géostatiques Lecture des contraintes initiales sur fichier
Charge	 Charge uniforme en tout point Charge dépendant de la côte Lecture charge sur fichier externe Charge uniforme par groupes
Température	 Température uniforme en tout point Δ Δ Lecture température sur fichier externe Φ Température uniforme par groupes
Pression	 Pression uniforme en tout point Pression dépendant de la côte Lecture charge sur fichier externe Pression uniforme par groupes

Initialisation des déplacements par mouvement de blocs rigide

Cet outil permet de caractériser le déplacement initial de chacun des nœuds du modèle considéré par la donnée d'un mouvement de blocs rigide.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture des données suivantes.

- X, Y : Coordonnées du « point de référence » exprimées dans le repère global,
- U, V : Composantes du vecteur déplacement du point de référence suivant les axes X, Y du repère global,
- Tx, Ty : Composantes dans le repère global du vecteur rotation au point de référence.

Dans le cas particulier où le champ de déplacement initial a déjà été défini par un déplacement de blocs rigide, les caractéristiques de ce dernier sont affichées dans la boîte de dialogue. Dans le cas contraire, l'ensemble des champs de la boîte de dialogue sont présentés « vides ».

Initialiser les déplacements par un mouvement de blocs rigide

- 1. Renseigner les champs de la boîte de dialogue permettant la définition d'un mouvement de blocs rigide.
- 2. Cliquer sur le bouton « Valider ».

Initialisation des déplacements par lecture sur fichier

Cet outil permet de caractériser le déplacement initial de chacun des nœuds du modèle considéré par lecture sur fichier.

Dans le cas particulier où le champ de déplacement initial a déjà été défini par la donnée d'un nom de fichier, ce dernier est affiché dans la grille boîte de dialogue. Dans le cas contraire, le champ « Nom » de la boîte de dialogue est présenté « vide ».

Initialiser les déplacements par fichier

- 1. Définir le nom du fichier sur lequel seront lus les déplacements initiaux dans le champ « Nom ». Le nom du fichier considéré peut également être obtenu de manière classique par utilisation du bouton « Ouvrir ».
- 2. Cliquer sur le bouton « Valider ».
- 3.

Initialisation des vitesses par mouvement de blocs rigide

Cet outil permet de caractériser la vitesse initiale de chacun des nœuds du modèle considéré par la donnée d'un mouvement de blocs rigide.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture des données suivantes.

- X, Y : Coordonnées du « point de référence » exprimées dans le repère global,
- Vx, Vy : Composantes du vecteur vitesse du point de référence suivant les axes X, Y du repère global,

Initialiser les vitesses par un mouvement de blocs rigide

- 1. Renseigner les champs de la boîte de dialogue permettant la définition d'un mouvement de blocs rigide.
- 2. Cliquer sur le bouton « Valider ».
- 3.

Initialisation des vitesses par lecture sur fichier

Cet outil permet de caractériser la vitesse initiale de chacun des nœuds du modèle considéré par lecture sur fichier. Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de la donnée suivante.

- Nom : Nom du fichier dans lequel seront lues les vitesses initiales pour chacun des nœuds du modèle.
- Dans le cas particulier où le champ de vitesse initial a déjà été défini par la donnée d'un nom de fichier, ce dernier est affiché dans la boîte de dialogue. Dans le cas contraire, le champ « Nom » de la boîte de dialogue est présenté « vide ».

Initialiser les vitesses par fichier

- Définir le nom du fichier sur lequel seront lues les vitesses initiales dans le champ « Nom ». Le nom du fichier considéré peut également être obtenu de manière classique par utilisation du bouton « Browse ».
- 2. Cliquer sur le bouton « Valider ».

Contraintes initiales uniformes par bloc

Cet outil permet l'affectation de contraintes initiales uniformes sur l'ensemble des blocs surfaciques sélectionnés.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture des données suivantes.

- Sxx, Syy, Sxy : Composantes du tenseur des contraintes

Initialiser les contraintes sur les blocs surfaciques sélectionnés

- 1. Renseigner les champs de la boîte de dialogue définissant le tenseur des contraintes initiales.
- 2. Cliquer sur le bouton « Appliquer » pour affecter ce tenseur de contraintes initiales à l'ensemble des blocs surfaciques sélectionnés.

Identifier la contrainte initiale affectée à des blocs surfaciques

1. Clic droit sur un bloc surfacique. Dans le cas où un tenseur de contraintes initiales aurait déjà été assigné à ce bloc par le présent outil, alors les caractéristiques du tenseur s'affichent dans la boîte de dialogue, sinon les champs restent vierges.

Visualiser des blocs qui ont des contraintes initiales connues

- 1. Renseigner les champs de la boîte de dialogue définissant le tenseur des contraintes initiales.
- 2. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des blocs surfaciques affectés de ce tenseur de contraintes initiales.

Notons ici que l'utilisation de cette option annule les éventuelles définitions ayant pu être réalisées au préalable par les outils « Contraintes initiales géostatiques » et « Contraintes initiales par lecture sur fichier ».

$^{ m \sigma}$ Contraintes initiales géostatiques

Les contraintes initiales présentes dans le sol sont le plus souvent dues au seul poids des terres. Dans le cas particulier où le sol est composé de strates horizontales, il est possible d'évaluer de manière très simple l'état de contraintes initiales à partir des poids volumiques des terres et des coefficients de poussée latérale. Nous pouvons en effet écrire dans ce cas :

$$S_{yy} = -\int_{y}^{ys} p_{v}.dy$$
$$S_{xx} = CP_{x}.S_{yy}$$

avec :

- Syy : Contrainte verticale en un point situé à la cote y
- Sxx : Contrainte horizontale en un point situé à la cote y
- Pv : Poids volumique
- CPx : Coefficient de poussée latérale dans les directions x
- Ys : Cote de la limite supérieure du modèle

L'outil « Contraintes initiales géostatiques » permet ainsi l'affectation de contraintes initiales calculées comme indiquée ci-dessus sur l'ensemble des blocs surfaciques du modèle.

L'activation de cet outil entraîne l'affichage d'une boîte de dialogue contenant essentiellement une grille permettant la définition des propriétés de chaque strate de terrain. Pour chaque strate, il convient en effet de définir les éléments suivants :

- Altitude : Cote Y de la limite supérieure de la couche.
- Pv: Poids volumique
- CPx : Coefficients de poussée latérale dans la direction x

Notons ici que pour la couche la plus élevée, il est possible de donner une cote supérieure à la limite supérieure réelle du modèle pour tenir compte d'un éventuel recouvrement.

Dans le cas particulier où les contraintes initiales dans les blocs surfaciques ont déjà été définies par le présent outil, les caractéristiques des strates de terrain déjà définies sont présentées dans la boîte de dialogue. Dans le cas contraire, les champs de la boîte de dialogue sont présentés « vides ».

Affecter des contraintes initiales géostatiques sur les blocs surfaciques

- 1. Renseigner les cases de la grille permettant la définition des caractéristiques de chaque couche de terrain. Chaque couche de terrain est ici caractérisée par une ligne de la grille.
- 2. Le bouton « Insérer », proposé dans la boîte de dialogue, permet l'insertion d'une ligne dans la grille, positionnée après la ligne courante définie par la position du curseur. Le bouton « Supprimer » supprime la ligne de la grille définie par la position du curseur.
- 3. Cliquer sur le bouton « Valider » pour affecter ces contraintes initiales.

Initialisation des contraintes par lecture sur fichier

Si

Cet outil permet d'initialiser les contraintes dans l'ensemble des éléments du modèle par lecture de ces dernières sur fichier.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de la donnée suivante.

- Nom : Nom du fichier dans lequel seront lues les contraintes initiales pour chacun des éléments du modèle.

Dans le cas particulier où les contraintes initiales ont déjà été définies par le présent outil, le nom de fichier est affiché dans la boîte de dialogue. Dans le cas contraire, le champ « Nom » de la boîte de dialogue est présenté « vide ».

Initialiser les contraintes par fichier

- 1. Définir le nom du fichier sur lequel seront lues les contraintes initiales dans le champ « Nom ». Le nom du fichier considéré peut également être obtenu de manière classique par utilisation du bouton « Browse ».
- 2. Cliquer sur le bouton « Valider ».

Initialisation des charges de manière uniforme en tout point

Cet outil permet la définition d'une charge initiale uniforme en tout point.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de cette charge initiale.

Dans le cas particulier où les charges initiales ont déjà été définies par le présent outil, la charge initiale uniforme affectée est affichée dans la boîte de dialogue. Dans le cas contraire, le champ « Charge » de la boîte de dialogue est présenté « vide ».

Initialiser les charges de manière uniforme en tout point

- 1. Renseigner le champ de la boîte de dialogue permettant la définition de la charge initiale.
- 2. Cliquer sur le bouton « Valider ».

Initialisation des charges en fonction de la cote

Cet outil permet la définition d'une charge initiale dépendant de la cote y de chacun des nœuds du modèle. Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture des données suivantes :

- Cote y1 : Cote des points possédant la charge initiale h1.
- Charge h1 : Charge initiale des points ayant la cote y1
- Cote y2 : Cote des points possédant la charge initiale h2.
- Charge h2 : Charge initiale des points ayant la cote y2

Compte tenu de ces données, la charge initiale en un point de cote y est simplement obtenue par interpolation linéaire comme suit :

$$h = \frac{h_1 - h_2}{y_1 - y_2} (y - y_1) + h_1$$

Dans le cas particulier où les charges initiales ont déjà été définies par le présent outil, les paramètres h1, y1, h2, y2 utilisés sont affichés dans les champs correspondants de la boîte de dialogue. Dans le cas contraire, les champs de la boîte de dialogue sont présentés « vides ».

Initialiser les charges en fonction de la cote

- 1. Renseigner les champs h1, y1, h2, y2 de la boîte de dialogue permettant la définition de pressions initiales dépendant de la cote.
- 2. Cliquer sur le bouton « Valider ».

h _{Charge} initiale uniforme par bloc

Cet outil permet l'affectation de charges initiales uniformes sur l'ensemble des nœuds appartenant aux blocs surfaciques sélectionnés. Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de cette charge initiale.

i

L'utilisation de cette option annule les éventuelles définitions ayant pu être réalisées au préalable par l'intermédiaire de l'un des trois autres outils permettant une définition globale de la charge initiale.

Initialiser la charge sur les nœuds appartenant aux blocs surfaciques sélectionnés

- 1. Renseigner le champ de la boîte de dialogue permettant la définition de la charge initiale.
- 2. Cliquer sur le bouton « Appliquer » pour affecter cette charge initiale à l'ensemble des nœuds appartenant aux blocs surfaciques sélectionnés.

Identifier la charge initiale affectée à des blocs surfaciques

1. Clic droit sur un bloc surfacique. Dans le cas où une charge initiale aurait déjà été assignée à ce bloc par le présent outil, la valeur de la charge s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser des blocs qui ont une charge initiale connue

- 1. Renseigner le champ de la boîte de dialogue définissant valeur de la charge initiale.
- 2. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des blocs surfaciques affectés de cette valeur de charge initiale.

ĥ Initialisation des charges par lecture sur fichier

Cet outil permet d'initialiser les charges de l'ensemble des nœuds du modèle par lecture de ces dernières sur fichier. Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de la donnée suivante.

Nom : Nom du fichier dans lequel seront lues les charges initiales pour chacun des nœuds du modèle.

Dans le cas particulier où les charges initiales ont déjà été définies par le présent outil, le nom de fichier est affiché dans la boîte de dialogue. Dans le cas contraire, le champ « Nom » de la boîte de dialogue est présenté « vide ».

Initialiser les charges par fichier

- Définir le nom du fichier sur lequel seront lues les charges initiales dans le champ « Nom ». Le nom 1. du fichier considéré peut également être obtenu de manière classique par utilisation du bouton « Browse ».
- 2. Cliquer sur le bouton « Valider ».

Initialisation des températures de manière uniforme en tout point

Cet outil permet la définition d'une température initiale uniforme en tout point.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de cette température initiale.

Dans le cas particulier où les températures initiales ont déjà été définies par le présent outil, la température initiale uniforme affectée est affichée dans la boîte de dialogue. Dans le cas contraire, le champ « Température » de la boîte de dialogue est présenté « vide ».

Initialiser les températures de manière uniforme en tout point

- Renseigner le champ de la boîte de dialogue permettant la définition de la température initiale. 1.
- 2. Cliquer sur le bouton « Valider ».

heta Température initiale uniforme par bloc

Cet outil permet l'affectation de températures initiales uniformes sur l'ensemble des nœuds appartenant aux blocs surfaciques sélectionnés. Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de cette température initiale.

Ð

θ

Notons ici que l'utilisation de cette option annule les éventuelles définitions ayant pu être réalisées au préalable par l'intermédiaire de l'un des trois autres outils permettant une définition globale de la température initiale.

Initialiser la température sur les nœuds appartenant aux blocs surfacigues sélectionnés

- Renseigner le champ de la boîte de dialogue permettant la définition de la température initiale. 1.
- Cliquer sur le bouton « Appliquer » ou sur le bouton « Valider » pour affecter cette température 2. initiale à l'ensemble des nœuds appartenant aux blocs surfaciques sélectionnés.

Identifier la température initiale affectée à des blocs surfaciques

1. Clic droit sur un bloc surfacique. Dans le cas où une température initiale aurait déjà été assignée à ce bloc par le présent outil, la valeur de la température s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser des blocs qui ont une température initiale connue

- 1. Renseigner le champ de la boîte de dialogue définissant valeur de la température initiale.
- 2. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des blocs surfaciques affectés de cette valeur de température initiale.

Initialisation des températures par lecture sur fichier

Cet outil permet d'initialiser les températures de l'ensemble des nœuds du modèle par lecture de ces dernières sur fichier.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de la donnée suivante.

- Nom : Nom du fichier dans lequel seront lues les températures initiales pour chacun des nœuds du modèle.

Dans le cas particulier où les températures initiales ont déjà été définies par le présent outil, le nom de fichier est affiché dans la boîte de dialogue. Dans le cas contraire, le champ « Nom » de la boîte de dialogue est présenté « vide ».

Initialiser les températures par fichier

- Définir le nom du fichier sur lequel seront lues les températures initiales dans le champ « Nom ». Le nom du fichier considéré peut également être obtenu de manière classique par utilisation du bouton « Parcourir ».
- 2. Cliquer sur le bouton « Valider ».

Initialisation des pressions de manière uniforme en tout point

Cet outil permet la définition d'une pression initiale uniforme en tout point. Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de cette pression initiale.

Dans le cas particulier où les pressions initiales ont déjà été définies par le présent outil, la pression initiale uniforme affectée est affichée dans la boîte de dialogue. Dans le cas contraire, le champ « Pression » de la boîte de dialogue est présenté « vide ».

Initialiser les pressions de manière uniforme en tout point

- 1. Renseigner le champ de la boîte de dialogue permettant la définition de la pression initiale.
- 2. Cliquer sur le bouton « Valider ».

Initialisation des pressions en fonction de la cote

Cet outil permet la définition d'une pression initiale dépendant de la cote z de chacun des nœuds du modèle.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture des données suivantes :

- Cote y1 : Cote des points possédant la pression initiale h1.
- Pression p1 : Pression initiale des points ayant la cote y1 _
- Cote y2 : Cote des points possédant la pression initiale h2.
- Pression p2 : Pression initiale des points ayant la cote y2

Compte tenu de ces données, la pression initiale en un point de cote y est simplement obtenue par interpolation linéaire comme suit :

$$p = \frac{p_1 - p_2}{y_1 - y_2}(y - y_1) + p_1$$

Dans le cas particulier où les pressions initiales ont déjà été définies par le présent outil, les paramètres y1, p1, y2, p2 utilisés sont affichés dans les champs correspondants de la boîte de dialogue. Dans le cas contraire, les champs de la boîte de dialogue sont présentés « vides ».

Initialiser les pressions en fonction de la cote

- Renseigner les champs y1, p1, y2, p2 de la boîte de dialogue permettant la définition de pressions 1 initiales dépendant de la cote.
- 2. Cliquer sur le bouton « Valider ».

Pression initiale uniforme par bloc

Cet outil permet l'affectation de pressions initiales uniformes sur l'ensemble des nœuds appartenant aux blocs surfaciques sélectionnés. Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de cette pression initiale.

Notons ici que l'utilisation de cette option annule les éventuelles définitions ayant pu être réalisées au préalable par l'intermédiaire de l'un des trois autres outils permettant une définition globale de la pression initiale.

Initialiser la pression sur les nœuds appartenant aux blocs surfaciques sélectionnés

- 1. Renseigner le champ de la boîte de dialogue permettant la définition de la pression initiale.
- 2. Cliquer sur le bouton « Appliquer » ou sur le bouton « Valider » pour affecter cette pression initiale à l'ensemble des nœuds appartenant aux blocs surfaciques sélectionnés.

Identifier la pression initiale affectée à des blocs surfaciques

Clic droit sur un bloc surfacique. Dans le cas où une pression initiale aurait déjà été assignée à ce 1. bloc par le présent outil, la valeur de la pression s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser des blocs qui ont une pression initiale connue

- 1. Renseigner le champ de la boîte de dialogue définissant valeur de la pression initiale.
- 2. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des blocs surfaciques affectés de cette valeur de pression initiale.

Initialisation des pressions par lecture sur fichier

Cet outil permet d'initialiser les pressions de l'ensemble des nœuds du modèle par lecture de ces dernières sur fichier.

Son activation entraîne l'affichage d'une boîte de dialogue permettant la fourniture de la donnée suivante.

- Nom : Nom du fichier dans lequel seront lues les pressions initiales pour chacun des nœuds du modèle.

Dans le cas particulier où les pressions initiales ont déjà été définies par le présent outil, le nom de fichier est affiché dans la boîte de dialogue. Dans le cas contraire, le champ « Nom » de la boîte de dialogue est présenté « vide ».

Initialiser les pressions par fichier

- 1. Définir le nom du fichier sur lequel seront lues les pressions initiales dans le champ « Nom ». Le nom du fichier considéré peut également être obtenu de manière classique par utilisation du bouton « Parcourir ».
- 2. Cliquer sur le bouton « Valider ».
11. Définition d'un « ensemble » de conditions aux limites

Introduction

L'activation de l'onglet "Conditions aux limites" permet la définition de l'ensemble de conditions aux limites courant. Cette activation entraîne :

- L'affichage d'une barre d'outils permettant la définition des conditions aux limites pour l'ensemble courant.
- L'affichage dans la zone graphique de l'écran d'une vue représentant le modèle avec les conditions aux limites déjà définies.

Pour tenir compte de l'éventuelle multiplicité de problèmes physiques élémentaires, la boîte à outils permettant la définition des conditions aux limites aura la forme définie ci-dessous.

Outils du problème élémentaire « Mécanique »

Comme le montre la figure ci-dessus, la boîte à outils est ainsi décomposée en autant d'entités qu'il y a de problèmes physiques élémentaires pour le module de calcul considéré (cf. Chapitre « Notion de problème physique élémentaire »).

A un instant donné, un seul problème physique élémentaire est « actif ». Le fait de cliquer sur le bouton d'activation d'un problème physique élémentaire entraîne :

- L'activation des outils associés au problème élémentaire choisi.
- La « désactivation » des outils associés aux autres problèmes physiques élémentaires.
- L'affichage dans la zone graphique des conditions aux limites associées au problème élémentaire actif.

Nous listons ci-dessous l'ensemble des outils associés à chacun des problèmes physiques élémentaires pouvant être considéré.

Problème physique élémentaire	Outils
Mécanique (M)	 Blocage latéral et inférieur Blocage latéral et inférieur (horizontal et vertical) Blocage latéral, inférieur et supérieur Définition générale de déplacements imposés Changements de repères
Hydrogéologie (H)	 h Charge imposée i Charge imposée variant linéairement avec la profondeur Conditions de suintement Conditions d'échange
Thermique (T)	 <i>θ</i> Température imposée <u> ¹¹¹</u> Conditions d'échange
Pression (P)	 Pression imposée Conditions d'échange

La prise en compte des conditions aux limites nodales est visualisée à l'écran par un symbole. Le tableau ci-dessous définit les symboles utilisés.

Déplacements imposés	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Charge imposée	₩-
Température imposée	
Potentiel imposé	

Pour un « modèle » donné, il est dans certains cas possible de définir plusieurs ensembles de conditions aux limites. Le tableau ci-dessous définit le nombre d'ensembles de conditions aux limites autorisés pour chacun des modules de calcul disponibles dans la présente version.

LINE	MCN L	TCN L	DYN I	LINC	LINH	MO DE	SUM O	DTN L	NSA T	TEX O	MEX O	CSN L	MPN L
1	≥1	≥1	≥1	≤2	1	1	1	≥1	1	≥1	≥1	≥1	≥1

Comme nous pouvons le noter sur le tableau ci-dessus, la possibilité de définir plusieurs ensembles de conditions aux limites est essentiellement utilisée pour les modules permettant des calculs non linéaires

(plusieurs incréments) et par les modules permettant des calculs « fonction du temps » (plusieurs pas de temps).

Pour illustrer cette fonctionnalité, considérons ici un problème de thermique transitoire (Module de calcul DTNL).

Supposons que le problème soit caractérisé par les conditions aux limites suivantes :

- Un ensemble de nœuds a une température imposée dont la variation en fonction du temps est définie par la fonction $T_1(t) = \overline{T_1} \cdot f_1(t)$.
- Un second ensemble de nœuds a une température imposée dont la variation en fonction du temps est définie par la fonction $T_2(t) = \overline{T}_2 \cdot f_2(t)$.

Pour modéliser le fait que nous ayons ici deux fonctions du temps différentes, il nous faudra utiliser deux ensembles de conditions aux limites.

De manière générale, nous définirons ainsi dans chaque ensemble toutes les conditions ayant la même évolution dans le temps de sorte que les températures imposées puissent se mettre sous la forme suivante :

$$\{T_1(t)\} = \{\overline{T}_1\}, f_1(t)$$

avec :

- $\{\overline{T_1}\}$: Vecteur des températures imposées dans l'ensemble de conditions aux limites considéré.
- $f_1(t)$: Fonction du temps. Cette fonction du temps est définie dans les données caractérisant le module de calcul (Voir chapitre : Données Calcul).

Ensemble de conditions aux limites 1

Les conditions aux limites prises en compte seront obtenues par « superposition » des conditions apportées par chaque ensemble. Les conditions imposées à l'instant t seront ainsi telles que :

$$\{T(t)\} = \{\overline{T}_1\}, f_1(t) + \{\overline{T}_2\}, f_2(t)$$

Création d'un nouvel ensemble de conditions aux limites

Notons ici que cette fonction ne sera bien évidemment accessible que dans la mesure où le module de calcul associé au modèle considéré permet la définition de plusieurs ensembles de conditions aux limites.

Créer un nouvel ensemble de conditions aux limites

- Activer l'item de menu « Création d'un ensemble de conditions aux limites » en cliquant à l'aide du bouton droit de la souris sur l'item « Conditions aux limites » du modèle considéré dans l'arborescence « Modèles ». Cette activation entraîne l'affichage d'une boîte de dialogue permettant la définition du « nom » donné au nouvel ensemble de conditions aux limites.
- 2. Définir dans la case « Nom », l'intitulé de l'ensemble de conditions aux limites à initialiser.
- 3. Choisir éventuellement un ensemble de référence à l'aide de la liste déroulante « A partir de ». L'utilisation de cette option entraînera la création d'un ensemble de conditions aux limites initialisé avec l'ensemble des conditions de l'ensemble de référence. Pour caractériser ce nouvel ensemble, il suffira ainsi de modifier ponctuellement les données spécifiques de ce dernier
- 4. « Valider ». L'ensemble de conditions aux limites ainsi initialisé devient ensemble courant.

Supprimer un ensemble de conditions aux limites

Pour supprimer un ensemble de conditions aux limites déjà défini, il suffit de suivre la procédure suivante.

1. Activer l'item de menu « Supprimer ensemble de conditions aux limites » en cliquant à l'aide du bouton droit de la souris sur le nom de l'ensemble de conditions aux limites considéré dans l'arborescence « Modèles ».

Mécanique : Blocage latéral et inférieur

L'activation de cet outil entraîne l'imposition automatique des conditions :

- U = 0 sur l'ensemble des nœuds de coordonnées x=xmin ou x=xmax
- V = 0 sur l'ensemble des nœuds de coordonnées y=ymin

Avec :

- U : déplacement suivant l'axe X
- V : déplacement suivant l'axe Y

Si le modèle comprend des coques ou des poutres qui s'étendent jusqu'aux frontières précédemment définies, alors leurs rotations seront bloquées à ces frontières.

Mécanique : Blocage latéral, inférieur (horizontal et vertical)

L'activation de cet outil entraîne l'imposition automatique des conditions :

- U = 0 sur l'ensemble des nœuds de coordonnées x=xmin ou x=xmax
- U = V = 0 sur l'ensemble des nœuds de coordonnées y=ymin

Avec :

- U : déplacement suivant l'axe X
- V : déplacement suivant l'axe Y

Si le modèle comprend des coques ou des poutres qui s'étendent jusqu'aux frontières précédemment définies, alors leurs rotations seront bloquées à ces frontières.

Mécanique : Blocage latéral, inférieur et supérieur

L'activation de cet outil entraîne l'imposition automatique des conditions :

- U = 0 sur l'ensemble des nœuds de coordonnées x=xmin ou x=xmax
- V = 0 sur l'ensemble des nœuds de coordonnées y=ymin ou y=ymax

Avec :

- U : déplacement suivant l'axe X
- V : déplacement suivant l'axe Y

Si le modèle comprend des coques ou des poutres qui s'étendent jusqu'aux frontières précédemment définies, alors leurs rotations seront bloquées à ces frontières.

Mécanique : Définition générale de déplacements imposés

Cet outil permet d'affecter les conditions d'appui existant en certains nœuds de la structure. Des conditions de type déplacement ou rotation imposé (nulles ou non nulles) peuvent être définies pour chacun des degrés de liberté des nœuds de la structure.

Les degrés de liberté associés à chaque nœud sont les deux déplacements notés U et V suivant les axes X et Y du repère global et éventuellement la rotation autour de l'axe normal au plan.

Si le modèle contient des blocs 1D de type "barres frottantes", alors un 4^{ème} degré de liberté est proposé : le déplacement relatif entre le bloc 1D (ancré) et le bloc surfacique (massif) l'environnant.

Définition générale	μ×
Appliquer Montrer	
∠ Définition	
$W \xrightarrow{T_z} V$ $T_z \xrightarrow{V} V$ $T_x \xrightarrow{V} T_y$	
Définition générale	
U imposé	
V imposé	
Theta imposé	
Déplacement relatif barre/volume	

Les paramètres de rotation n'ont ici de sens que dans la mesure où le modèle contient des « éléments de structure » de type poutre.

Notons ici qu'il est possible d'imposer des conditions dans un repère quelconque sous réserve de définir un repère spécifique aux nœuds considérés grâce à l'outil « Changement de repères ».

Affecter des conditions d'appui

- 1. Sélectionner les entités possédant le même type de conditions aux limites (Points, lignes, surfaces...).
- 2. Activer l'outil « Définition générale de déplacements imposés ».
- 3. Définir la condition imposée pour chacun des deux (ou trois) degrés de liberté.
- 4. « Appliquer » pour affecter ces conditions aux limites à l'ensemble des entités sélectionnées.

Nous définissons ci-dessous à titre d'exemple les différents types de conditions qui peuvent être définies pour le paramètre de déplacement U.

-	U imposé	Δ.	ucune condition
	U imposé	1	
-	U [mm]	0.000	Déplacement U imposé à une valeur nulle
	U imposé	1	
-	U [mm]	1.5	Déplacement U imposé à une valeur non nulle (ici 1.5 mm)

Les conditions imposées sur les paramètres de rotation n'auront d'effet que sur les nœuds possédant des paramètres de rotation.

Identifier les conditions d'appuis affectées

- 1. Activer l'outil « Définition générale de déplacements imposés ».
- 2. Clic droit sur la cible (tout type de bloc en mode G ou mode M). La valeur de la condition d'appui affecté à l'objet ciblé s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser les nœuds qui ont les mêmes conditions d'appui

- 1. Activer l'outil « Définition générale de déplacements imposés ».
- 2. Renseigner le champ de la boîte de dialogue définissant la valeur de la condition d'appui.
- 3. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des nœuds (Model M) ou entités (Mode G) affectés de cette configuration d'appui.

Mécanique : Changements de repères

Les conditions d'appui sont imposées par défaut pour des degrés de liberté s'exprimant dans le repère global de la structure. Pour pouvoir imposer des conditions ne s'exprimant pas facilement dans le repère global (ex : appui sur plan incliné), il convient de pouvoir définir un repère quelconque associé aux nœuds supportant de telles conditions. C'est l'objet de l'outil analysé ici.

Affecter des changements de repères

- 1. Sélectionner les nœuds pour lesquels le même repère doit être défini.
- 2. Activer l'outil "Changement de repères".
- 3. Définir la valeur θ de l'angle de rotation du repère Oxy autour de l'axe Oz.
- 4. "Appliquer" pour affecter le repère ainsi défini à l'ensemble des nœuds sélectionnés. La prise en compte de ces repères est visualisée à l'écran par l'affichage de deux vecteurs représentant les directions définies.

Affecter des changements de repères tangents à une frontière

- 1. Sélectionner les nœuds pour lesquels un changement de repère doit être défini.
- 2. Activer l'outil "Changement de repères".
- 3. Activer la case à cocher "Tangent".
- 4. "Appliquer" pour affecter un repère tangent à la frontière à laquelle appartient chacun des nœuds sélectionnés. La prise en compte de ces repères est visualisée à l'écran par l'affichage de deux vecteurs représentant les directions définies.

Capturer le repère affecté à un nœud

- 1. Activer l'outil "Changement de repères".
- 2. Cliquer avec le bouton droit de la souris sur le nœud considéré. Les caractéristiques du repère affecté au nœud cliqué sont affichées dans la boîte de dialogue.

Visualiser les nœuds ayant le même changement de repère

- 1. Activer l'outil « Changement de repères ».
- 2. Définir dans la boîte de dialogue les caractéristiques du changement de repère considéré.
- 3. Cliquer « Montrer ». Les nœuds possédant ce changement de repère sont sélectionnés.

N Hydrogéologie : Charges imposées

Cet outil permet l'affectation d'une charge imposée constante sur l'ensemble des entités sélectionnées du modèle.

Affecter une charge imposée

- 1. Sélectionner les entités possédant la même charge imposée.
- 2. Activer l'outil « Charges imposées ».
- 3. Définir la valeur de la charge imposée.
- 4. « Appliquer » pour affecter cette charge imposée à l'ensemble des entités sélectionnées.

Identifier la charge imposée affectée à des entités

- 1. Activer l'outil « Charges imposées ».
- 2. Clic droit sur l'entité ciblée (tout type de bloc en mode G ou mode M). Dans le cas où une pression initiale aurait déjà été assignée à ce bloc par le présent outil, la valeur de la charge s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser des entités qui ont une charge imposée connue

- 1. Activer l'outil « Charges imposées ».
- 2. Renseigner le champ de la boîte de dialogue définissant valeur de la pression initiale.
- 3. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des entités affectées de cette valeur de charge imposée.

Hydrogéologie : Charges imposées variant linéairement avec la profondeur

Cet outil permet l'affectation d'une charge imposée variant linéairement avec la profondeur y sur l'ensemble des entités sélectionnées du modèle. La variation de charge en fonction de y est définie par la donnée de deux côtes y et des charges correspondantes.

Affecter une charge imposée variant linéairement en fonction de la profondeur

- 1. Sélectionner les entités pour lesquelles on veut imposer une charge variant en fonction de la profondeur.
- 2. Activer l'outil « Charge imposée variant linéairement ».
- 3. Définir deux côtes y1 et y2 (différentes) et les charges correspondantes.
- 4. « Appliquer » pour affecter cette charge imposée à l'ensemble des entités sélectionnées.

Hydrogéologie : Conditions de suintement

L'activation de cet outil entraîne la prise en compte d'une condition de suintement sur l'ensemble des faces sélectionnées.

Hydrogéologie : Conditions d'échange

Cet outil permet l'affectation de conditions d'échange linéaires ou non linéaires sur l'ensemble des faces sélectionnées.

Affecter des conditions d'échange linéaires

- 1. Sélectionner les faces caractérisées par la même condition d'échange.
- 2. Activer l'outil « Conditions d'échange ».
- 3. Définir la valeur du coefficient d'échange « he » et la charge à l'infini « Cinf ».
- 4. Cocher l'option « Linéaire ».
- 5. « Appliquer » pour affecter la condition d'échange ainsi définie à l'ensemble des faces sélectionnées.

Affecter des conditions d'échange non linéaires

- 1. Sélectionner les faces caractérisées par la même condition d'échange.
- 2. Activer l'outil « Conditions d'échange ».
- 3. Définir la valeur du coefficient d'échange « he » et la charge à l'infini « Cinf ».
- 4. « Décocher » l'option « Linéaire ».
- 5. Dans le tableau proposé à cet effet, définir les couples de valeurs « Charge » et « Coefficient d'échange **relatif** » associé caractérisant la non linéarité de l'échange.
- 6. « Appliquer » pour affecter la condition d'échange ainsi définie à l'ensemble des faces sélectionnées.
- Il convient de donner dans ce tableau un coefficient d'échange relatif. Pour une charge donnée, le coefficient d'échange pris en compte sera égal au produit de la valeur de référence « he » par le coefficient d'échange relatif obtenu par interpolation à l'aide des valeurs fournies dans ce tableau.

Identifier les conditions d'échange affectées à des facettes

- 1. Activer l'outil « Conditions d'échange ».
- 2. Clic droit sur l'entité ciblée (tout type de bloc en mode G ou mode M). Dans le cas où une pression initiale aurait déjà été assignée à ce bloc par le présent outil, la valeur de la charge s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser les facettes qui les mêmes conditions d'échange

- 1. Activer l'outil « Conditions d'échange ».
- 2. Renseigner le champ de la boîte de dialogue définissant valeur de la pression initiale.
- 3. Cliquer sur le bouton « Montrer » pour sélectionner les facettes affectées de cette valeur de condition d'échange.

$\overline{\theta}$ Thermique : Températures imposées

Cet outil permet l'affectation d'une température imposée constante sur l'ensemble des entités sélectionnées du modèle.

Affecter une température imposée

- 1. Sélectionner les entités possédant la même température imposée.
- 2. Activer l'outil « Températures imposées ».
- 3. Définir la valeur de la température imposée.
- 4. « Appliquer » pour affecter cette température imposée à l'ensemble des entités sélectionnées.

Capturer la température imposée sur une entité

- 1. Activer l'outil « Températures imposées ».
- 2. Cliquer avec le bouton droit de la souris sur l'entité considérée. La température imposée sur l'entité cliquée est affichée dans la boîte de dialogue.

Visualiser les entités ayant la même température imposée

- 1. Activer l'outil « Températures imposées ».
- 2. Définir dans la boîte de dialogue la température imposée considérée.
- 3. Activer le bouton « Montrer ». Les entités possédant la température imposée considérée sont sélectionnées.

Thermique : Conditions d'échange

Cet outil permet l'affectation de conditions d'échange linéaires ou non linéaires sur l'ensemble des faces sélectionnées.

Affecter des conditions d'échange linéaires

- 1. Sélectionner les facettes caractérisées par la même condition d'échange.
- 2. Activer l'outil « Conditions d'échange ».
- 3. Définir la valeur du coefficient d'échange « he » et la température à l'infini « Tinf ».
- 4. Cocher l'option « Linéaire ».
- 5. « Appliquer » pour affecter la condition d'échange ainsi définie à l'ensemble des faces sélectionnées.

Affecter des conditions d'échange non linéaires

- 1. Sélectionner les facettes caractérisées par la même condition d'échange.
- 2. Activer l'outil « Conditions d'échange ».
- 3. Définir la valeur du coefficient d'échange « he » et la température à l'infini « Tinf ».
- 4. Décocher l'option « Linéaire ».
- 5. Dans le tableau proposé à cet effet, définir les couples de valeurs « Température » et « Coefficient d'échange **relatif** » associé caractérisant la non linéarité de l'échange.
- 6. « Appliquer » pour affecter la condition d'échange ainsi définie à l'ensemble des faces sélectionnées.

Noter ici qu'il convient de donner dans ce tableau un coefficient d'échange relatif. Pour une température donnée, le coefficient d'échange pris en compte sera ainsi égal au produit de la valeur de référence « he » par le coefficient d'échange relatif obtenu par interpolation à l'aide des valeurs fournies dans ce tableau.

Identifier les conditions d'échange affectées à des facettes

- 1. Activer l'outil « Conditions d'échange ».
- 2. Clic droit sur l'entité ciblée (tout type de bloc en mode G ou mode M). Dans le cas où une pression initiale aurait déjà été assignée à ce bloc par le présent outil, la valeur de la charge s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser les facettes qui les mêmes conditions d'échange

- 1. Activer l'outil « Conditions d'échange ».
- 2. Renseigner le champ de la boîte de dialogue définissant valeur de la pression initiale.
- 3. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des entités affectées de cette valeur de condition d'échange.

P Pression : Pressions imposées

Cet outil permet l'affectation d'une pression imposée constante sur l'ensemble des entités sélectionnées du modèle.

Affecter une pression imposée

- 1. Sélectionner les entités possédant la même pression imposée.
- 2. Activer l'outil « Pressions imposées ».
- 3. Définir la valeur de la pression imposée.
- 4. « Appliquer » pour affecter cette pression imposée à l'ensemble des entités sélectionnées.

Capturer la pression imposée sur une entité

- 1. Activer l'outil « Pressions imposées ».
- 2. Cliquer avec le bouton droit de la souris sur l'entité considérée. La pression imposée sur l'entité cliquée est affichée dans la boîte de dialogue.

Visualiser les entités ayant la même pression imposée

- 1. Activer l'outil « Pressions imposées ».
- 2. Définir dans la boîte de dialogue la pression imposée considérée.
- 3. Cliquer « Montrer ». Les entités possédant la pression imposée considérée sont sélectionnées.

Pression : Conditions d'échange

Cet outil permet l'affectation de conditions d'échange linéaires ou non linéaires sur l'ensemble des faces sélectionnées.

Affecter des conditions d'échange linéaires

- 1. Sélectionner les faces caractérisées par la même condition d'échange.
- 2. Activer l'outil « Conditions d'échange ».
- 3. Définir la valeur du coefficient d'échange « he » et la pression à l'infini « Pinf ».
- 4. Cocher l'option « Linéaire ».
- 5. « Appliquer » pour affecter la condition d'échange ainsi définie à l'ensemble des faces sélectionnées.

Affecter des conditions d'échange non linéaires

- 1. Sélectionner les facettes caractérisées par la même condition d'échange.
- 2. Activer l'outil « Conditions d'échange ».
- 3. Définir la valeur du coefficient d'échange « he » et la pression à l'infini « Pinf ».
- 4. Décocher l'option « Linéaire ».
- 5. Dans le tableau proposé à cet effet, définir les couples de valeurs « Pression » et « Coefficient d'échange **relatif** » associé caractérisant la non linéarité de l'échange.
- 6. « Appliquer » pour affecter la condition d'échange ainsi définie à l'ensemble des faces sélectionnées.
- Noter qu'il convient de donner dans ce tableau un coefficient d'échange relatif. Pour une pression donnée, le coefficient d'échange pris en compte sera ainsi égal au produit de la valeur de référence « he » par le coefficient d'échange relatif obtenu par interpolation à l'aide des valeurs du tableau.

Identifier les conditions d'échange affectées à des facettes

- 1. Activer l'outil « Conditions d'échange ».
- 2. Clic droit sur l'entité ciblée (tout type de bloc en mode G ou mode M). Dans le cas où une pression initiale aurait déjà été assignée à ce bloc par le présent outil, la valeur de la charge s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser les facettes qui les mêmes conditions d'échange

- 1. Activer l'outil « Conditions d'échange ».
- 2. Renseigner le champ de la boîte de dialogue définissant valeur de la pression initiale.
- 3. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des entités affectées de cette valeur de condition d'échange.

12. Définition de cas de charge

Introduction

L'activation de l'onglet "Cas de charge" permet la définition de l'ensemble « Cas de charge » courant. Cette activation entraîne :

- L'affichage d'une barre d'outils permettant la définition des charges pour l'ensemble courant.
- L'affichage dans la zone graphique de l'écran d'une vue représentant le modèle avec les conditions de charges déjà définies.

Pour tenir compte de l'éventuelle multiplicité de problèmes physiques élémentaires, la boîte à outils permettant la définition des conditions de charges aura la forme définie ci-dessous.

Boutons d'activation d'un problème élémentaire

Outils du problème élémentaire « Mécanique »

Comme le montre la figure ci-dessus, la boîte à outils est ainsi décomposée en autant d'entités qu'il y a de problèmes physiques élémentaires pour le module de calcul considéré (cf. chapitre « Notion de problème physique élémentaire »).

A un instant donné, un seul problème physique élémentaire est « actif ». Le fait de cliquer sur le bouton d'activation d'un problème physique élémentaire entraîne :

- L'activation des outils associés au problème élémentaire choisi.
- La « désactivation » des outils associés aux autres problèmes physiques élémentaires.
- L'affichage dans la zone graphique des conditions de charges associées au problème élémentaire actif.

Nous listons ci-dessous l'ensemble des outils associés à chacun des problèmes physiques élémentaires pouvant être considéré.

Problème physique élémentaire	Outils
Mécanique (M)	 Forces nodales Pression répartie Pression hydrostatique Forces de déconfinement Forces de pesanteur Contraintes constantes par groupe Contraintes lues sur fichier Contraintes de chargement thermique Effets différés Changement de position de nappe
Hydrogéologie (H)	Flux réparti uniforme Débit ponctuel Débit volumique
Thermique (T)	 Flux réparti uniforme Débit ponctuel Débit volumique
Pression (P)	 Flux réparti uniforme Débit ponctuel Débit volumiaue

Pour un « modèle » donné, il est dans certains cas possible de définir plusieurs « cas de charges ». Le tableau ci-dessous définit le nombre de cas de charges autorisés pour chacun des modules de calcul disponibles dans la présente version.

LINE	MCNL	TCNL	DYNI	LINC	LINH	MODE	SUMO	DTNL	NSAT	ΤΕΧΟ	MEXO	CSNL	MPNL
≥1	≥1	≥1	≥1	≤2	≥1	0	1	≥1	1	≥1	≥1	≥1	≥1

Dans le tableau ci-dessus, il convient de distinguer les deux cas suivants :

a) Problèmes linéaires (Modules LINE et LINH)

Dans le cas particulier où le module de calcul associé au modèle considéré permet la résolution d'un problème « linéaire » (Modules LINE et LINH), chaque cas de charge correspond à un problème « indépendant ».

Pour chaque cas de charge i, il sera en effet résolu un problème pouvant se mettre sous la forme schématique suivante :

$$[K]{U_i} = {F_i}$$

b) Problèmes non linéaires ou fonctions du temps

La possibilité de définir plusieurs « cas de charges » est également utilisée pour les modules permettant des calculs non linéaires (plusieurs incréments) et par les modules permettant des calculs « fonction du temps » (plusieurs pas de temps). Dans ce cas, les cas de charges sont utilisés pour définir le « chargement » qu'il convient de considérer à chaque incrément (ou pas de temps).

Pour illustrer cette fonctionnalité, considérons ici un problème de dynamique transitoire (Ex : Module de calcul DYNI).

Supposons à titre d'exemple que le chargement fonction du temps appliqué à la structure soit caractérisé comme suit :

- Un ensemble de facettes subit une pression imposée dont la variation en fonction du temps est définie par la fonction $P_1(t) = \overline{P_1} \cdot f_1(t)$.
- Un second ensemble de facettes subit une pression imposée dont la variation en fonction du temps est définie par la fonction $P_2(t) = \overline{P}_2 \cdot f_2(t)$.

Pour modéliser le fait que nous ayons ici deux fonctions du temps différentes, il nous faudra utiliser deux « cas de charge ».

De manière générale, nous définirons ainsi dans chaque « cas de charge » toutes les conditions de charge ayant la même évolution dans le temps de sorte que le « vecteur force » appliqué correspondant à ce cas puisse se mettre sous la forme suivante :

$$\{F_1(t)\} = \{\overline{F}_1\} f_1(t)$$

avec :

- $\{\overline{F_1}\}$: Vecteur des forces imposées dans le cas de charge considéré.
- $f_1(t)$: Fonction du temps. Cette fonction du temps est définie dans les données caractérisant le module de calcul (Voir chapitre : Données Calcul).

Cas de charge 2

Les conditions de charge prises en compte seront obtenues par « superposition » des conditions apportées par chaque cas. Les conditions de charge imposées à l'instant t seront ainsi telles que : $\{F(t)\} = \{\overline{F_1}\} f_1(t) + \{\overline{F_2}\} f_2(t)$

Création d'un nouveau cas de charge

Notons ici que cette fonction ne sera bien évidemment accessible que dans la mesure où le module de calcul associé au modèle considéré permet la définition de plusieurs ensembles de cas de charges.

Créer un nouveau cas de charge

- Activer l'item de menu « Création d'un cas de charge » en cliquant à l'aide du bouton droit de la souris sur l'item « Cas de charges » du modèle considéré dans l'arborescence « Modèles ». Cette activation entraîne l'affichage d'une boîte de dialogue permettant la définition du « nom » donné au nouveau cas de charge.
- Par défaut, le logiciel attribue à chaque cas de charge créé un label prédéfini. L'utilisateur peut modifier ce nom et personnaliser en utilisant la touche [F2].
- 2. Définir dans la case « Nom », l'intitulé du cas de charge à initialiser.
- 3. Choisir éventuellement un ensemble de référence à l'aide de la liste déroulante « A partir de ». L'utilisation de cette option entraînera la création d'un cas de charge initialisé avec l'ensemble des charges de l'ensemble de référence. Pour caractériser ce nouvel ensemble, il suffira ainsi de modifier ponctuellement les données spécifiques de ce dernier.
- 4. « Valider ». Le cas de charge ainsi initialisé devient cas courant.

Supprimer un cas de charge

Pour supprimer un cas de charge déjà défini, il suffit de suivre la procédure suivante.

1. Activer l'item de menu « Supprimer cas de charge » en cliquant à l'aide du bouton droit de la souris sur le nom du cas de charge considéré dans l'arborescence « Modèles ».

Lister les chargements définis par cas de charge

Plusieurs chargements peuvent être définis pas cas de charge. L'utilisateur pourra visualiser ces chargements en utilisant « l'arborescence des données ».

L'activation de cet affichage permet de visualiser l'ensemble des entités « chargements » définies.

Un clic sur un des chargements active la sélection des éléments affectés par ce chargement.

Mécanique : Forces ponctuelles

Cet outil permet l'affectation de « forces ponctuelles » sur l'ensemble des points sélectionnés. Une force ponctuelle est caractérisée par les composantes ci-dessous :

- "Fx", "Fy" : Composantes du vecteur force à appliquer
- *Mz*" : Composantes du vecteur moment à appliquer. Ce vecteur ne prend effet que sur les nœuds possédant des degrés de liberté en rotation.

Force ponctuelle : vecteur force

Les vecteurs force (F) et moment (M) sont représentés à l'écran par des flèches dont la longueur est proportionnelle à l'intensité du vecteur.

Affecter des forces ponctuelles

- 1. Sélectionner les points possédant les mêmes forces.
- 2. Activer l'outil « Forces ponctuelles ».
- 3. Définir les composantes des vecteurs force et moment à appliquer.
- 4. « Appliquer » pour affecter ces forces à l'ensemble des points sélectionnés.

Identifier les composantes de la force nodale affectée à un nœud

- 1. Activer l'outil « Forces ponctuelles ».
- 2. Clic droit sur la cible. Les composantes de la force nodale affectée au nœud s'affichent dans la boîte de dialogue, sinon le champ reste vierge.
- Si aucun chargement n'est associé au bloc ciblé, alors un message d'alerte (#1515) est affiché

Visualiser tous les nœuds qui ont la même force nodale

- 1. Activer l'outil « Forces ponctuelles ».
- 2. Renseigner le champ de la boîte de dialogue définissant les composantes de la force nodale.
- 3. Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des nœuds (Model M) ou entités (Mode G) affectés de la même la force nodale.

ڬ Mécanique : Pression répartie

Cet outil permet l'affectation de pressions sur les « contours » du modèle. La pression répartie est définie par les paramètres suivants :

- p1, p2 : valeurs de la pression non uniforme aux extrémités des segments sélectionnés ;
- p : valeurs de la pression uniforme aux extrémités des segments sélectionnés.

Les pressions sont représentées à l'écran par des flèches dont la longueur est proportionnelle à l'intensité de la pression :

La pression est appliquée directement par clic sur le segment considéré. On considère ici par convention que la pression est positive quand elle est orientée vers le segment cliqué. La flèche représentée à l'écran visualise le sens de la pression prise en compte.

Affecter une pression répartie non-uniforme

- 1. Sélectionner les segments où appliquer une même pression uniforme.
- 2. Activer l'outil « Pression répartie ».
- 3. Vérifier que l'option « Pressions uniformes » n'est pas cochée.
- 4. Définir les valeurs de pression imposée P1 et P2 respectivement.
- 5. Cliquer « Appliquer » pour affecter la pression sur les segments sélectionnés.

Affecter une pression répartie uniforme

- 1. Sélectionner les segments où appliquer une même pression uniforme.
- 2. Activer l'outil « Pression répartie non uniforme ».
- 3. Vérifier que l'option « Pressions uniformes » est cochée.
- 4. Définir la valeur de la pression imposée.
- 5. Cliquer « Appliquer » pour affecter la pression sur les segments sélectionnés.

Identifier la pression imposée sur une entité

- 1. Activer l'outil « Pression répartie uniforme ».
- 2. Cliquer avec le bouton droit de la souris sur l'entité considérée. La pression uniforme imposée sur l'entité cliquée est affichée dans la boîte de dialogue.

Si aucun chargement n'est associé au bloc ciblé, alors un message d'alerte (#1515) est affiché

Visualiser les entités ayant la même pression imposée

- 1. Activer l'outil « Pression répartie uniforme ».
- 2. Définir dans la boîte de dialogue la pression imposée considérée.
- 3. Activer le bouton « Montrer ». Les entités possédant la pression uniforme considérée sont sélectionnées.

Cet outil permet l'affectation de pressions hydrostatique sur des segments. Les pressions sont représentées à l'écran par des flèches distribuées sur les segments et dont la longueur est proportionnelle à l'intensité de la pression.

L'affectation de pressions hydrostatiques suppose la donnée des deux valeurs suivantes :

- Y (p=0) : Côte y pour laquelle la pression est nulle
- ρ : Masse volumique du fluide exerçant la pression

La pression hydrostatique en un point de côte y est alors calculée comme suit :

$$p = 0 \text{ si } y \ge Y (p=0)$$

$$p = \rho x g x (Y (p=0) - y) si y < Y (p=0)$$

Affecter une pression hydrostatique

- 1. Activer l'outil « Pression hydrostatique ».
- 2. Définir les paramètres y et ρ caractérisant la pression hydrostatique.
- 3. Cliquer sur la surface chargée. La pression est ici une charge dirigée vers le coté de la surface cliquée.

Identifier la pression hydrostatique imposée sur une entité

- 1. Activer l'outil « Pression hydrostatique ».
- 2. Cliquer avec le bouton droit de la souris sur l'entité considérée. La pression hydrostatique imposée sur l'entité cliquée est affichée dans la boîte de dialogue.

Visualiser les entités ayant la même pression hydrostatique imposée

- 1. Activer l'outil « Pression hydrostatique ».
- 2. Définir dans la boîte de dialogue les valeurs définissant la pression hydrostatique considérée.
- 3. Activer le bouton « Montrer ». Les entités possédant la pression hydrostatique considérée sont sélectionnées.

Mécanique : Forces de déconfinement

Cet outil permet l'affectation de forces de surface de type « déconfinement » sur des segments externes de blocs. Les forces de déconfinement sont utilisées pour modéliser l'influence d'une excavation sur le sol environnant.

Phase précédant l'excavation (Origine des contraintes)

Phase d'excavation

Pour modéliser une excavation, une méthode classique consiste en effet à appliquer des forces sur l'ensemble des segments devenues « externes » lors de la phase simulant l'excavation (i.e. Phase d'excavation).

Les forces de surface à appliquer peuvent s'exprimer comme suit :

$$\begin{cases} T_x \\ T_y \end{cases} = -\lambda \begin{cases} \sigma_{xx}^0.n_x + \sigma_{xy}^0.n_y \\ \sigma_{yx}^0.n_x + \sigma_{yy}^0.n_y \end{cases}$$

avec :

- T_x, T_y : Composantes du vecteur force de déconfinement s'appliquant en un point d'un segment devenu externe lors de la phase simulant l'excavation.
- σ_{ij}^0 : Composantes du tenseur des contraintes « initiales » exprimées en ce même point et existant dans le sol avant l'excavation.
- n_x, n_y : Composantes du vecteur normal au segment considéré en ce point.
- λ : Coefficient compris entre 0 et 1. Ce coefficient λ permet d'appliquer une fraction des forces de déconfinement pour simuler la proximité éventuelle du front de taille.

Simulation de la proximité du front de taille par le coefficient λ

Ces contraintes « initiales » peuvent définies de deux manières :

- Résultat de la phase précédent l'excavation.
- Contraintes initiales de type géostatique définies lors de l'initialisation de la première phase.

- Dans le cas où le coefficient λ ne serait pas pris égal à 1 lors de la phase d'excavation, il convient de prendre en compte le « complément » de ces forces dans une phase ultérieure (front de taille à l'infini).
- Depuis la version 2020.0, une nouvelle définition des forces d'excavation a été introduite comme méthode par défaut (nommée DEC) pour les calculs avec l'algorithme MCNL. Elle remplace la précédente méthode (LAM) qui est toutefois toujours proposée dans l'algorithme TCNL et pour assurer la compatibilité avec les versions plus anciennes.

Affecter des forces de déconfinement (DEC)

- 1. Activer l'outil « Forces de déconfinement ».
- 2. Cocher "Actif"
- 3. Définir la valeur du coefficient « Lambda » (valeur comprise entre 0 et 1).
- 4. Définir le type « d'origine des contraintes », c'est-à-dire les contraintes avant excavation.
- 5. « Appliquer » pour affecter ces forces de déconfinement à l'ensemble des segments sélectionnés. « Forces d'excavation » s'affiche alors dans le coin bas gauche de l'espace de travail.

Noter que l'outil sera inactif si la phase courante est la première phase d'un enchainement de calculs de type "phasage".

Visualisation des forces de deconfinement (DEC) et du mode de sélection

Affecter des forces de déconfinement (LAM)

- 1. Activer l'outil « Forces de déconfinement ».
- 2. Définir la valeur du coefficient « Lambda » (valeur comprise entre 0 et 1).
- 3. Définir le type « d'origine des contraintes », c'est-à-dire les contraintes avant excavation.
- 4. Sélectionner les segments sur lesquelles agissent les forces de déconfinement. Utiliser l'outil "Sélection automatique" pour détecter les segments libérés entre l'état courant et l'état de contraintes de référence avant excavation.
- 5. « Appliquer » pour affecter ces forces de déconfinement à l'ensemble des segments sélectionnés. « Forces d'excavation » s'affiche alors dans le coin bas gauche de l'espace de travail.

Les forces de déconfinement sont représentées à l'écran par des flèches représentant la valeur du coefficient de déconfinement. Nous voyons sur la figure ci-dessous que les forces de confinement sont représentées par une flèche de longueur proportionnelle à λ . Un trait de couleur gris donne la longueur de référence 1.

Visualisation des forces de deconfinement (LAM) et du mode de sélection

Identifier les forces de déconfinement affectées à un segment

- 1. Activer l'outil « Forces de déconfinement ».
- 2. Cliquer avec le bouton droit de la souris sur le bloc considéré. Les caractéristiques des forces de déconfinement imposées (intensité, origine des contraintes de calcul) sur le segment cliqué sont affichées dans la boîte de dialogue.
- Si aucun chargement n'est associé au segment ciblé, alors un message d'alerte (#1515) est affiché

Visualiser les segments ayant les mêmes forces de déconfinement imposées

- 1. Activer l'outil « Forces de déconfinement ».
- 2. Définir dans la boîte de dialogue les caractéristiques des forces de déconfinement (intensité, origine des contraintes de calcul) considérées.
- 3. Activer le bouton « Montrer ». Les entités affectées de ces forces de déconfinement sont sélectionnées.

Mécanique : Forces de pesanteur

Ŧ

Cet outil permet l'affectation de forces de pesanteur sur l'ensemble des groupes sélectionnés.

Affecter des forces de pesanteur

- 1. Activer l'outil « Forces de pesanteur ».
- 2. Définir la valeur des composantes dans le repère global de l'accélération g considérée.
- 3. Sélectionner les blocs sur lesquels agissent les forces de pesanteur.
- « Appliquer » pour affecter ces forces de pesanteur à l'ensemble des groupes sélectionnés. « Forces 4. de pesanteur » s'affiche alors dans le coin bas gauche de l'espace de travail.
- L'activation du bouton « Sélection automatique » entraîne la sélection de l'ensemble des groupes inactifs dans la phase précédente et devenus actifs lors de la phase considérée. Ce bouton n'est pas activable si le modèle considéré n'est pas de type « Phase » où s'il correspond à la phase 1.

Phase précédente

Phase actuelle (Le groupe représenté en bleu est devenu actif)

Identifier les forces de pesanteur affectées à une entité

- 1. Activer l'outil « Forces de pesanteur ».
- Cliquer avec le bouton droit de la souris sur le bloc considéré. Les composantes des forces de 2. pesanteur imposées sur le bloc cliqué sont affichées dans la boîte de dialogue.
- H Si aucun chargement n'est associé au bloc ciblé, alors un message d'alerte (#1515) est affiché

Visualiser les entités ayant les mêmes forces de pesanteur imposées

- 1. Activer l'outil « Forces de pesanteur ».
- 2. Définir dans la boîte de dialogue les composantes des forces de pesanteur considérées.
- 3. Activer le bouton « Montrer ». Les entités affectées des forces de pesanteur considérées sont sélectionnées.

Φ Mécanique : Contraintes constantes par groupes

Cet outil permet l'affectation de contraintes uniformes sur des blocs surfaciques.

Affecter des contraintes constantes sur blocs surfaciques

- 1. Sélectionner les blocs surfaciques pour lesquels on souhaite définir des contraintes constantes.
- 2. Activer l'outil « Contraintes constantes ».
- 3. Définir la valeur des quatre composantes dans le repère global du tenseur des contraintes considéré.
- 4. « Appliquer » pour affecter ces contraintes initiales à l'ensemble des blocs surfaciques sélectionnés.

Identifier les contraintes affectées à un bloc surfacique

- 1. Activer l'outil « Contraintes constantes ».
- 2. Cliquer avec le bouton droit de la souris sur le bloc considéré. Les composantes du tenseur de contraintes imposées sur le bloc cliqué sont affichées dans la boîte de dialogue.

Si aucun chargement n'est associé au bloc ciblé, alors un message d'alerte (#1515) est affiché

Visualiser les blocs surfaciques ayant les mêmes contraintes constantes imposées

- 1. Activer l'outil « Contraintes constantes ».
- 2. Définir dans la boîte de dialogue les composantes du tenseur de contraintes considéré.
- 3. Activer le bouton « Montrer ». Les entités affectées du tenseur de contraintes considéré sont sélectionnées.

Mécanique : Contraintes lues sur fichier

Cet outil permet l'affectation de contraintes lues sur fichier.

Affecter des contraintes lues sur fichier

- 1. Activer l'outil « Contraintes lues sur fichier ».
- Définir le nom du fichier contenant les contraintes. Dans le cas où un chargement de type « Contraintes lues sur fichier » a déjà été affecté, le nom du fichier considéré est affiché dans la boîte de dialogue. Dans le cas contraire, la case « Nom » est proposée vide.
- 3. « Appliquer » pour affecter ces contraintes à l'ensemble des blocs surfaciques sélectionnés.

Mécanique : Contraintes thermiques

Cet outil permet l'affectation d'un chargement lié à contraintes d'origine thermique sur l'ensemble des blocs surfaciques sélectionnés. Les températures entraînant les contraintes d'origine thermique sont données constantes par blocs ou lues sur fichier.

Affecter des contraintes thermiques constantes par bloc

- 1. Activer l'outil « Contraintes thermiques ».
- 2. Définir le coefficient de dilatation thermique des groupes considérés.
- 3. Définir la température de référence Tref.
- 4. Définir la température T des blocs sélectionnés. Les contraintes seront calculées à l'aide de l'accroissement de température T-Tref.
- 5. « Appliquer » pour affecter ces contraintes à l'ensemble des blocs sélectionnés.

Affecter des contraintes thermiques avec températures lues sur fichier

- 1. Activer l'outil « Contraintes thermiques ».
- 2. Définir le coefficient de dilatation thermique des blocs considérés.
- 3. Définir la température de référence Tref.
- 4. Définir le nom du fichier contenant les températures considérées. Le nom du fichier considéré peut également être obtenu de manière classique par utilisation du bouton « Ouvrir ».
- 5. « Appliquer » pour affecter ces contraintes à l'ensemble des blocs sélectionnés.

Hécanique : Effets différés

ATTENTION : ce chargement n'est applicable que pour des lois de comportements avec un comportement élastique linéaire isotrope. Aussi, il n'est pas utilisable avec le HSM par exemple.

Dans certains types de terrain, la modification de l'état de contraintes dans le massif, due par exemple à un creusement, peut entraîner des déformations différées évoluant très lentement pendant longtemps. Celles-ci peuvent avoir plusieurs origines : mouvements de l'eau interstitielle, variations de volume en présence d'eau (matériaux argileux gonflants), comportements viscoélastique ou viscoplastique du sol. C'est à ce dernier effet que l'on s'intéresse ici.

Dans le cas de matériaux plastiques, un tel calcul exige théoriquement de suivre l'évolution pas à pas du phénomène et donc de résoudre un problème de type « viscoplasticité ». S'agissant de calculs relativement lourds, on se contente généralement d'une méthode simplifiée qui est exacte dans le cas de matériaux à comportement linéaire moyennant un certain nombre d'hypothèses supplémentaires.

On peut montrer que cette méthode consiste un chargement de type « contraintes initiales » où ces dernières peuvent être calculées comme suit :

$$\sigma_{d} = \frac{\Delta \mu}{\mu_{1}} (\sigma_{1} - \sigma_{0}) + \frac{(\mu_{1} \cdot \Delta \lambda - \Delta \mu \cdot \lambda_{1})}{\mu_{1} \cdot (3\lambda_{1} + 2\mu_{1})} tr(\sigma_{1} - \sigma_{0})I$$

Avec :

- σ_1 : Etat de contraintes à la fin des phases de construction
- $\sigma_{
 m o}$: Etat de contraintes initiales
- (λ_1, μ_1) : Coefficients de Lamé instantanés
- (λ_2, μ_2) : Coefficients de Lamé à long terme
- I : Matrice unité

L'outil « Effets différés » permet l'application d'un chargement de contraintes initiales défini comme indiqué ci-dessus sur l'ensemble des blocs surfaciques sélectionnés.

Il n'est actif que pour les cas de charges associés à un modèle de type « Phasage ». Il est inactif pour la phase 1 dans le cas où cette dernière possède des contraintes initiales de type géostatiques et pour les phases 1 et 2 dans le cas où la phase 1 possède des contraintes initiales nulles.

Affecter des contraintes de type « Effet différé »

- 1. Sélectionner les blocs surfaciques pour y définir des contraintes initiales de type effet différé.
- 2. Activer l'outil « Effets différés ».
- 3. Définir l'état de contraintes « initial ». L'utilisateur à ici le choix entre « Origine géostatique » (seulement dans le cas où les contraintes initiales de la phase 1 sont de type géostatique) et « Phase ».
- 4. Dans le cas où le choix effectué est « Phase », l'utilisateur doit définir ici la phase définissant les contraintes initiales grâce à la liste déroulante contenant les intitulés de chacune des phases précédant la phase actuelle.
- Définir l'état de contraintes « actuel ». L'utilisateur précise ici la phase définissant les contraintes 5. actuelles grâce à la liste déroulant les intitulés de chacune des phases précédant la phase actuelle.
- 6. Définir la valeur « instantanée » du module Young et du coefficient de Poisson des blocs sélectionnés.

- 7. « Appliquer » pour affecter ces contraintes initiales à l'ensemble des blocs surfaciques sélectionnés.
- Notons ici que les valeurs « à long terme » sont définies dans les propriétés associées à chaque groupe d'éléments surfaciques (Voir Modèle / Propriétés).

Identifier l'effet différé affecté à un bloc surfacique

- 1. Activer l'outil « Effets différés ».
- 2. Cliquer avec le bouton droit de la souris sur le bloc considéré. Les paramètres de l'effet différé imposé sur le bloc cliqué sont affichés dans la boîte de dialogue.
- Si aucun chargement n'est associé au bloc ciblé, alors un message d'alerte (#1515) est affiché

Visualiser les blocs surfaciques ayant le même effet différé imposé

- 1. Activer l'outil « Effets différés ».
- 2. Définir dans la boîte de dialogue les paramètres de l'effet différé considéré.
- 3. Activer le bouton « Montrer ». Les entités affectées de l'effet différé considéré sont sélectionnées.

Changement de position de nappe

Cet outil permet d'affecter un chargement permettant :

- d'initialiser les contraintes effectives dans un massif dans lequel règne un champ de charge hydraulique connu (par exemple déterminé par un calcul préliminaire de type « Hydrogéologie ») ;
- ou de calculer les déformations résultant d'une variation du niveau de la nappe, ou plus exactement de la différence entre un champ de charge hydraulique final et un état initial.

On permet d'affecter 3 types de charges hydrauliques définissant la nappe :

- constant,
- variable,
- lu sur fichier lorsqu'on a réalisé un calcul préalable de type « Hydraulique ».

۷	ariation de la nappe	Ψ×								
۷	alider									
⊿	Charge hydraulique initiale									
	z ţ									
	Données charge hydrauli	Constant 🗸								
	Valeur [m]	Constant								
Δ	Charge hydraulique actu	Variable								
		Fichier								
	Données charge hydrauli	Constant 🗸								
	Valeur [m]	0.000								
Δ	Poids vol.									
	Poids vol. [MN/m3]	0.000								

Affecter un niveau de nappe initial

- constant

- 1. Sélectionner la donnée de la charge hydraulique de type « Constant ».
- 2. Définir la valeur de la charge initiale.

- variable

- 1. Sélectionner la donnée de la charge hydraulique de type « Variable ».
- 2. Renseigner le nombre de points (Xi, Yi) définissant la variation de nappe.
- 3. Définir chaque couple (Xi, Yi).

- lu sur fichier

- 1. Sélectionner la donnée de la charge hydraulique de type « Fichier ».
- Parcourir pour spécifier le fichier de stockage du champ de charges hydrauliques, résultat d'un calcul type « Hydrogéologie ». Le format (nom et extension) de ce fichier est libre, seuls les « espaces » sont interdits.

Affecter un niveau de nappe final

- constant

- 1. Sélectionner la donnée de la charge hydraulique de type « Constant ».
- 2. Définir la valeur de la charge initiale.

- variable

- 1. Sélectionner la donnée de la charge hydraulique de type « Variable ».
- 2. Renseigner le nombre de points (Xi, Yi) définissant la variation de nappe.
- 3. Définir chaque couple (Xi, Yi).

- lu sur fichier

- 1. Sélectionner la donnée de la charge hydraulique de type « Fichier ».
- 2. Parcourir pour spécifier le fichier de stockage du champ de charges hydrauliques, résultat d'un calcul type « Hydrogéologie ». Le format (nom et extension) de ce fichier est libre.

Donnée du poids volumique du fluide

- 1. Renseigner la valeur du poids volumique du fluide. Par défaut l'eau est à 10 kN/m3.
- 2. L'opération d'affectation du chargement au modèle se termine avec le bouton « Valider ».

V	ariation de la nappe	q	١X						
V	alider								
Δ	Charge hydraulique initia	ale							
	Données charge hydrauli	Variable	•						
	Nombre de points	4							
⊿	Points								
	P1 [m]	0.000							
	Z1 [m]	22.500							
	P2 [m]	7.000							
	Z2 [m]	22.500							
	P3 [m]	16.000							
	Z3 [m]	15.000							
	P4 [m]	25.000							
	Z4 [m]	15.000							
Δ	Charge hydraulique actu	elle							
	z f								
	Données charge hydrauli	Constant	-						
	Valeur [m]	10.000							
Δ	Poids vol.								
	Poids vol. [MN/m3]	0.010							

Résultat appliqué sur un modèle

Y Définition des blocs affectés par le changement de nappe

Le chargement associé à la variation du niveau de nappe étant défini, il faut établir les blocs affectés par ce chargement et les poids volumiques secs et saturés associés. Les blocs imperméables (parois par exemple) ne seront pas concernés par cet outil.

Affecter un poids volumique

- 1. Sélectionner les blocs ayant les mêmes propriétés.
- 2. Activer l'outil « Définition des poids volumiques ».
- 3. Renseigner la valeur du poids volumique du sol sec et la valeur du poids volumique du sol saturé.
- 4. « Appliquer » pour affecter ces données à l'ensemble des blocs sélectionnées.

ПП,

Flux réparti uniforme

Cet outil permet l'affectation de flux répartis uniformes sur les « segments » externes de blocs surfaciques.

Affecter un flux réparti uniforme

- 1. Sélectionner les segments possédant le même flux réparti uniforme.
- 2. Activer l'outil « Flux réparti uniforme ».
- 3. Définir la valeur du flux imposé.
- 4. « Appliquer » pour affecter ce flux à l'ensemble des segments sélectionnées.

Identifier le flux uniforme affecté à un segment

- 1. Activer l'outil « Flux réparti uniforme ».
- 2. Cliquer avec le bouton droit de la souris sur le segment considéré. Les paramètres du flux uniforme imposé sur le segment cliqué sont affichés dans la boîte de dialogue.
- Si aucun chargement n'est associé au segment ciblé, alors un message d'alerte (#1515) est affiché

Visualiser les segments ayant le même flux uniforme imposé

- 1. Activer l'outil « Flux réparti uniforme ».
- 2. Définir dans la boîte de dialogue les paramètres du flux uniforme considéré.
- 3. Activer le bouton « Montrer ». Les entités affectées du flux uniforme considéré sont sélectionnées.

Hebits ponctuels

Cet outil permet l'affectation de débits ponctuels sur l'ensemble des points sélectionnés.

Affecter un débit ponctuel

- 1. Sélectionner les points possédant le même débit ponctuel.
- 2. Activer l'outil « Débits ponctuels ».
- 3. Définir la valeur du débit ponctuel imposé.
- 4. « Appliquer » pour affecter ce débit à l'ensemble des points sélectionnés.

Identifier le débit ponctuel affecté à un nœud

- 1. Activer l'outil « Débits ponctuels ».
- 2. Clic droit sur la cible. La valeur du débit ponctuel affecté au nœud s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Si aucun chargement n'est associé au point ciblé, alors un message d'alerte (#1515) est affiché

Visualiser tous les nœuds qui ont le même débit ponctuel

- 1. Activer l'outil « Débits ponctuels ».
- 2. Renseigner le champ de la boîte de dialogue définissant la valeur du débit ponctuel.
- Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des nœuds (Model M) ou points (Mode G) affectés du même débit ponctuel.

Débits volumiques

Cet outil permet l'affectation de débits volumiques sur l'ensemble des blocs surfaciques sélectionnés.

Affecter un débit volumique

- 1. Sélectionner les blocs possédant le même débit volumique.
- 2. Activer l'outil « Débits volumiques ».
- 3. Définir la valeur du débit volumique imposé.
- 4. « Appliquer » pour affecter ce débit à l'ensemble des blocs sélectionnés.

Identifier le débit volumique affecté à un bloc surfacique

- 1. Activer l'outil « Débits volumiques ».
- 2. Clic droit sur la cible. La valeur du débit volumique affecté au bloc volumique s'affiche dans la boîte de dialogue, sinon le champ reste vierge.

Visualiser tous les blocs surfaciques qui ont le même débit volumique

- 1. Activer l'outil « Débits volumiques ».
- 2. Renseigner le champ de la boîte de dialogue définissant la valeur du débit volumique.
- Cliquer sur le bouton « Montrer » pour sélectionner l'ensemble des éléments surfaciques (Model M) ou blocs surfaciques (Mode G) affectés du même débit volumique.

13. Définition des paramètres du « module de calcul »

Introduction

En sus des caractéristiques intrinsèques du modèle considéré, la résolution d'un problème spécifique nécessite la fourniture d'un certain nombre de données associées au "Module de calcul" choisi (méthode de résolution, critères de convergence, discrétisations dans le temps, ...).

Nous décrivons dans ce chapitre les données nécessaires à chacun des modules de calcul implémentés dans la présente version du logiciel. Chacun de ces modules de calcul est caractérisé par un mot clé de quatre lettres (cf. liste dans le paragraphe « Définition des modèles »).

De manière générale la définition des données du module de calcul utilisé pour un modèle donné s'effectue simplement en activant l'item « Paramètres module de calcul » proposé en cliquant à l'aide du bouton droit de la souris sur le modèle considéré dans l'arborescence « Modèles ».

Les modules de calculs peuvent être proposés avec 3 algorithmes de résolution :

- "Pardiso" est le plus rapide, mais il requiert une machine avec une taille de RAM adaptée ;
- "Multifrontal" est moins puissant, mais il est compatible avec la majorité des machines actuelles ;
- "Skyline", le plus traditionnel des 3, est aussi le plus lent.

Le solveur Pardiso est recommandé.

Accès aux paramètres de calcul

L'accès à la définition des paramètres de calcul se fait par clic droit sur le nom du modèle en cours de préparation.

Exemple :

Module LINE

Le module LINE est principalement utilisé pour la résolution de problèmes linéaires.

Les données nécessaires à ce module de calcul sont définies par l'intermédiaire d'une boîte de dialogue contenant l'onglet ci-dessous.

Données pour solveur	LINE			×
Paramètres généraux		Type d'algorithme de résolution		
		Type d'algorithme de résolution	Pardiso	•
	E	Options solveur : méthode directe	Multifrontal	
		Méthode	Pardiso 😽	
			Méthode directe-Skyline	

Onglet : Paramètres généraux

La résolution d'un problème linéaire peut être réalisée par l'une des deux méthodes ci-dessous :

- Méthode "Pardiso"
- Méthode "Multifrontale"
- Méthode directe avec stockage "skyline" de la matrice

Définir les paramètres d'une analyse « multifrontale »

- 1. Choisir l'option « Analyse multifrontale » dans la grille de dialogue proposée (option par défaut).
- 2. Cocher l'option « Calcul avec stockage secondaire sur fichier » si l'on souhaite que ces derniers soient stockés sur fichier.
- Lorsque la méthode multifrontale est utilisée, les calculs se font la plupart du temps tout en mémoire, au contraire du code utilisé avec la méthode classique dite « skyline », cette dernière écrivant quasiment toujours les facteurs sur disque. Il résulte de l'utilisation de l'option MUL une taille mémoire nécessaire nettement supérieure aux valeurs habituellement utilisées jusqu'ici. Si cette taille importante devait empêcher la modélisation tout en mémoire sur des machines pourvues d'un faible espace mémoire, il est conseillé d'activer l'option d'écriture de la matrice des facteurs sur fichiers. Il est également possible de jouer sur le choix de l'algorithme de minimisation du remplissage pour

déterminer la séquence de permutation optimale et ainsi minimiser la taille mémoire. Toutefois, la dissection emboîtée généralisée donne un meilleur résultat dans la grande majorité des cas, quoique la méthode soit plus lente.

Définir les paramètres d'une analyse « directe skyline »

- 1. Choisir l'option « Analyse directe » dans la grille de dialogue proposée.
- 2. Choisir l'un des trois types de calcul proposés ci-dessous.
 - Nouveau calcul sans stockage de la matrice factorisée.
 - Nouveau calcul avec stockage de la matrice factorisée. Ce cas pourra être choisi s'il est envisagé de chercher la réponse de la même structure sous l'effet de nouveaux cas de charges. Notons malgré tout que cette option ne présente un intérêt réel que dans le cas de « gros » modèles possédant plusieurs milliers de degrés de liberté. Si cette option est choisie, l'utilisateur doit définir les noms de fichiers utilisés pour le stockage de la partie supérieure de la matrice de rigidité et de la diagonale.
 - Calculs avec utilisation d'une matrice factorisée. On considère ici que la factorisation de la matrice a déjà été réalisée. L'utilisateur doit ici définir les noms de fichiers créés dans une étape antérieure et utilisé pour le stockage de la partie supérieure de la matrice de rigidité et de la diagonale.

3. Si le choix effectué entraîne une utilisation de la matrice factorisée (Cas 2 et 3), définir les noms des fichiers de stockage de la partie supérieure de la matrice de rigidité et de la diagonale.

Module MCNL

Le module MCNL permet de résoudre les problèmes de comportement en mécanique non linéaire (élastoplasticité avec écrouissage, élasticité non linéaire) pour les géomatériaux (sols, bétons, roches, blocs de chaussée).

Les données nécessaires à ce module de calcul sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Paramètres généraux

Cet onglet permet la définition des paramètres suivants :

- Paramètres du processus itératif,
- Méthode de calcul utilisée pour la résolution des systèmes linéaires,
- Type d'analyse considéré,
- Options de stockage des résultats.

Données pour solveur MCNL					
Paramètres généraux Conditions aux limites Cas de charges Pression interstitielle		Processus itératif			
		Nombre max d'incréments	5		
		Nombre max d'itérations par incrément	500		
		Tolérance []	1.000e-02		
	E	Méthode de résolution et type d'algorithme de résolution			
		Méthode de résolution	1 - Méthode des contraintes initiales	•	
		Type d'algorithme de résolution	Pardiso	•	
		Type de calcul			
		Type de calcul	Standard	•	
		Stockage			
		Stockage des déformations totales			
		Stockage des déformations plastiques			

Définir les paramètres généraux du module de calcul

- 1. Activer l'onglet « Paramètres généraux ».
- 2. Définir le nombre d'incréments considéré (Nincr).
- 3. Définir le nombre maximal d'itérations par incrément.
- 4. Définir la tolérance relative sur la convergence. On choisira classiquement : $10^{-3} \le tolérance \le 10^{-2}$
- 5. Choisir la méthode de résolution du problème non linéaire parmi la liste proposée ci-dessous.
 - Méthode des contraintes initiales (défaut),
 - Méthode de rigidité tangente,
 - Méthode des contraintes initiales couplée avec la méthode D-F-P modifiée.
- 6. Choisir la méthode de résolution des systèmes non linéaires ("Pardiso", "Multifrontale" ou méthode directe)
- 7. Choisir le type d'analyse considéré parmi la liste proposée ci-dessous.
 - Analyse élastoplastique standard,
 - Calcul de facteurs de sécurité sur les résistances. Cette option permet de calculer le plus grand coefficient R par lequel on peut diviser les caractéristiques de résistance (c et tan φ) des éléments du maillage tout en obtenant la convergence du calcul élastoplastique (pour le nombre d'itérations et la tolérance fournis dans les données du module MCNL). L'utilisation de cette option entraîne la redéfinition des incréments de calcul : le nombre d'incréments fournis dans les données du module, et les valeurs du vecteur VFT correspondant aux incréments autres que le

premier sont ignorées. L'optimisation porte sur la résistance de tous les groupes d'éléments du maillage correspondant aux modèles de Von Mises sans écrouissage (IMOD=11), Drucker Prager sans écrouissage (IMOD=13) ou Mohr Coulomb (IMOD=10), à l'exclusion de tous les autres modèles de comportement. Le processus consiste à attribuer aux éléments correspondant des caractéristiques réduites égales à c/R et tan φ /R. En pratique, on optimise la valeur du coefficient 1/R dans un intervalle défini par l'utilisateur.

- Calcul de facteur de sécurité sur les chargements. Cette option permet de calculer le plus grand coefficient R que l'on peut appliquer à l'un des chargements définis dans le jeu de données courant tout en obtenant la convergence du calcul élastoplastique (pour le nombre d'itérations et la tolérance fournis dans les données du module MCNL). Elle fournit une indication de la charge limite. L'utilisation de cette option entraîne la redéfinition des incréments de calcul : le nombre d'incréments fournis dans les données du module, et les valeurs du vecteur VFT correspondant aux incréments autres que le premier sont ignorées.
- 8. Indiquer si l'on souhaite le stockage (pour visualisations graphiques) des résultats « déformations totales » et « déformations plastiques ».
- D'autres méthodes de résolution sont proposées pour être utilisées dans des contextes bien définis (voir liste ci-dessous). Elles sont accessibles à l'utilisateur par édition du jeu de données (fichier .data) en s'appuyant sur le document « Manuel du solveur ».
 - Méthode mixte avec calcul de la matrice de rigidité tangente pour les deux premières itérations de chaque incrément,
 - Idem Méthode 3 pour les trois premières itérations de chaque incrément,
 - Méthode des contraintes initiales couplée avec la méthode line search,
 - Méthode des contraintes initiales couplée avec la méthode sécante,
 - Méthode des contraintes initiales couplée avec une méthode d'incrémentation automatique du chargement,
 - Méthode des contraintes initiales couplée avec une méthode d'incrémentation automatique du chargement et la méthode line search,
 - Méthode des contraintes initiales couplée avec une méthode d'incrémentation automatique du chargement et la méthode sécante.

Onglet 2 : Pilotage des conditions aux limites

Cet onglet permet de définir l'évolution des éventuelles conditions de déplacements imposés non nuls lors du processus incrémental. Cette évolution est caractérisée par la donnée d'une valeur f(i) pour chacun des incréments considérés.

Les déplacements imposés dans un « ensemble de conditions aux limites » seront ainsi à l'incrément i tels que :

$$\{U(i)\} = \{\overline{U}\}, f(i)$$

avec :

- $\{\overline{U}\}$: Vecteur des déplacements imposés dans l'ensemble de conditions aux limites considéré.
- f(i) : Valeur de la fonction pour l'incrément i.
- Si dans le modèle considéré il n'y a pas de déplacements imposés non nuls, les données associées à cet onglet ne sont pas utilisées.

- Si les déplacements imposés ne varient pas lors du processus incrémental, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(i) = 1 \forall i$
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions des conditions aux limites en déplacement, il convient de définir plusieurs ensembles de conditions aux limites (Voir chapitre : « Initialisation des conditions aux limites »). Il est alors possible de définir une fonction *f* différente pour chacun de ces ensembles.

Entrer les coefficients de pilotage des conditions limites

- 1. Activer l'onglet « Pilotage des conditions aux limites ».
- 2. Choisir l'ensemble pour lequel on souhaite définir la fonction parmi les ensembles de conditions aux limites définis dans le modèle.
- 3. Définir les valeurs de la fonction f(i) pour chacun des incréments considérés.
- 4. Les Nincr valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».
- 5. Répéter les étapes 2 et 3 pour tous les ensembles de conditions aux limites définis dans le modèle.

Onglet 3 : Pilotage des chargements

Cet onglet permet de définir l'évolution des chargements imposés lors du processus incrémental. Cette évolution est caractérisée par la donnée d'une valeur f(i) pour chacun des incréments considérés.

Les charges imposées dans un « cas de charge » seront ainsi à l'incrément i tels que :

 ${F(i)} = {\overline{F}} f(i)$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les charges imposées pour le « cas de charge » considéré.
- f(i): Valeur de la fonction à l'incrément i.
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions des conditions de charges, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction *f* différente pour chacun de ces cas.

Entrer les coefficients de pilotage des charges

- 1. Activer l'onglet « Pilotage des charges ».
- 2. Choisir le cas de charge pour lequel on souhaite définir la fonction f parmi les cas de charge définis dans le modèle.
- 3. Définir les valeurs de la fonction f(i) pour chacun des incréments considérés.
- 4. Les Nincr valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».
- 5. Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle.

Onglet 4 : Pression interstitielle

Dans le cas d'une analyse non drainée (spécifiée dans les PROPRIETES du matériau), cette option permet de stocker le champ des surpressions générées par chargement dans les matériaux déclarés non drainants.

Définir le stockage des pressions interstitielles pour reprise

- 1. Cocher la cellule "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 5 : Stockage pour reprise

Dans le cas où le modèle courant est de type « phasage », cet onglet n'est pas actif. Dans ce cas en effet les opérations de stockage et de reprise sont gérées de manière automatique.

Cet onglet permet le stockage sur fichier de l'ensemble des éléments (résultats obtenus pour le dernier incrément) nécessaires à une éventuelle « reprise ».

Définir un stockage pour reprise

- 1. Activer l'onglet "Stockage pour reprise".
- 2. Cocher la case "Stockage pour reprise".
- 3. Entrer le nom du fichier de stockage.

Module TCNL

Le module TCNL permet de résoudre les problèmes de contact entre deux solides à comportement mécanique non linéaire (élastoplasticité avec écrouissage, élasticité non linéaire).

Les données nécessaires à ce module de calcul sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Paramètres généraux

Cet onglet permet la définition des paramètres suivants :

- Paramètres du processus itératif,
- Type des critères de contact à vérifier,
- Méthode de calcul utilisée pour la résolution des systèmes linéaires,
- Options de stockage des résultats.

Données pour solveur TCNL					
Paramètres généraux		Processus itératif			
Cas de charges		Nombre max d'incréments	1		
		Nombre max d'itérations par incrément	500		
		Tolérance	0.001000		
		Critère à vérifier			
		Non interpénétration			
		Décollement			
		Frottement			
		Type d'algorithme de résolution			
		 Multifrontal Méthode directe-Skyline 			
		Option solveur Multifrontal			
		Calcul avec stockage secondaire sur fichier			
		Stockage			
		Stockage des déformations totales			
		Stockage des déformations plastiques			

Définir les paramètres généraux du module de calcul

- 1. Activer l'onglet « Paramètres généraux ».
- 2. Définir le nombre d'incréments considéré (Nincr).
- 3. Définir le nombre maximal d'itérations par incrément.
- 4. Définir la tolérance relative sur la convergence. On choisira classiquement : $10^{-3} \le tolérance \le 10^{-2}$
- 5. Choisir la méthode de résolution des systèmes linéaires (méthode directe ou méthode « multifrontale »)
- 6. Cocher la case « Non interpénétration » si l'on souhaite vérifier les critères de non interpénétration.
- 7. Cocher la case « Décollement » si l'on souhaite vérifier les critères de décollement.
- 8. Cocher la case « Frottement » si l'on souhaite vérifier les critères de frottement.
- 9. Indiquer si l'on souhaite le stockage (pour visualisations graphiques) des résultats « déformations plastiques ».

Onglet 2 : Pilotage des chargements

Cet onglet permet de définir l'évolution des chargements imposés lors du processus incrémental. Cette évolution est caractérisée par la donnée d'une valeur f(i) pour chacun des incréments considérés.

Les charges imposées dans un « cas de charge » seront ainsi à l'incrément i tels que :

$${F(i)} = {\overline{F}} f(i)$$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les charges imposées pour le « cas de charge » considéré.
- f(i): Valeur de la fonction à l'incrément i.
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions des conditions de charges, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction *f* différente pour chacun de ces cas.

Entrer les coefficients de pilotage des charges

- 1. Activer l'onglet « Pilotage des charges ».
- 2. Choisir le cas de charge pour lequel on souhaite définir la fonction f parmi les cas de charge définis dans le modèle.
- 3. Définir les valeurs de la fonction f(i) pour chacun des incréments considérés.
- 4. Les Nincr valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».
- 5. Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle.

Onglet 3 : Stockage pour reprise

Dans le cas où le modèle courant est de type « phasage », cet onglet n'est pas actif. Dans ce cas en effet les opérations de stockage et de reprise sont gérées de manière automatique.

Cet onglet permet le stockage sur fichier de l'ensemble des éléments (résultats obtenus pour le dernier incrément) nécessaires à une éventuelle « reprise ».

Définir un stockage pour reprise

- 1. Activer l'onglet "Stockage pour reprise".
- 2. Cocher la case "Stockage pour reprise".
- 3. Entrer le nom du fichier de stockage.

Module DYNI

Le module DYNI effectue le calcul par intégration directe de la réponse d'une structure soumise à une sollicitation dynamique. Il permet de résoudre pas à pas l'équation d'équilibre dynamique :

$$[M] \{ \ddot{X}(t) \} + [C] \{ \dot{X}(t) \} + [K] \{ X(t) \} = \{ F(t) \}$$

avec :

- *X*(*t*) : Vecteur des déplacements nodaux de la structure considérée.
- $\dot{X}(t), \ddot{X}(t)$: Vecteurs vitesse et accélération.
- F(t): Vecteur des charges imposées en fonction du temps.
- [M], [C], [K] : Matrices de masse, amortissement et rigidité de la structure.

Ce module ne permet que la résolution des problèmes linéaires pour lesquels les matrices K, C et M sont constantes.

L'intégration dans le temps est basée sur l'algorithme de Newmark, qui est un algorithme implicite et inconditionnellement stable.

Il est possible de définir une matrice d'amortissement de type Rayleigh s'exprimant sous la forme : $\begin{bmatrix} c \end{bmatrix}_{k=1}^{k} \begin{bmatrix} k \end{bmatrix}_{k=1}^{k} \begin{bmatrix} k \end{bmatrix}_{k=1}^{k}$

[C] = a.[K] + b.[M]

où a et b sont deux constantes définies par l'utilisateur.

Si l'on connaît les pourcentages d'amortissement critique $\xi 1$, $\xi 2$ associés à 2 modes propres de la structure, de pulsations ω_1 , ω_2 , on pourra estimer a et b à partir des expressions suivantes :

$$a = \frac{2}{\omega_2^2 - \omega_1^2} (\xi_2 \omega_2 - \xi_1 \omega_1)$$

$$b = \frac{2\omega_1 \omega_2}{\omega_2^2 - \omega_1^2} (\xi_1 \omega_2 - \xi_2 \omega_1)$$

Les données nécessaires à ce module de calcul sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Paramètres généraux

Cet onglet permet la définition des paramètres caractérisant la discrétisation temporelle et un éventuel amortissement de Rayleigh.

Entrer les paramètres généraux

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t₀ du temps.
- 3. Donner la valeur considérée du pas de temps.
- 4. Cocher la case « Prise en compte d'un amortissement de Rayleigh » si l'on souhaite faire intervenir un amortissement.
- 5. Si amortissement, définir les coefficients a et b caractérisant l'amortissement de Rayleigh.
- 6. Choisir la méthode de résolution des systèmes linéaires (méthode directe ou méthode « multifrontale »)
- Noter que les paramètres d'amortissement ne seront pris en compte que pour les éléments pour lesquels un amortissement particulier n'a pas été défini dans « PROPRIETES ».

Onglet 2 : Pilotage des conditions aux limites sur les inconnues principales

Cet onglet permet de définir l'évolution en fonction du temps des conditions imposées sur les "inconnues principales". Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions imposées sur les inconnues principales dans un « ensemble de conditions aux limites » seront ainsi à l'instant t_i telles que :

$$\{U(t_i)\} = \{\overline{U}\} f(t_i)$$

avec :

- \overline{U} : Vecteur des inconnues principales imposées dans l'ensemble de conditions aux limites considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si les inconnues principales imposées ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$

Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions aux limites sur les inconnues principales, il convient de définir plusieurs ensembles de conditions aux limites (Voir chapitre : « Initialisation des conditions aux limites »). Il est alors possible de définir une fonction du temps différente pour chacun de ces ensembles.

Entrer les coefficients de pilotage des conditions limites

- 1. temps parmi les ensembles de conditions aux limites définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées (Colonne notée « Coefficients »).
- 3. Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».
- 4. Pour chaque valeur de temps définir le coefficient de « relaxation » considéré. Ce coefficient doit être égal à 1 (Valeur par défaut) si les conditions aux limites sont prises en compte pour le temps considéré et égal à 0 dans le cas contraire.
- 5. Répéter les étapes 2 à 4 pour tous les ensembles de conditions aux limites définis dans le modèle.

Onglet 3 : Pilotage des conditions de chargement

Cet onglet permet de définir l'évolution en fonction du temps des conditions de chargement. Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions de chargement imposées dans un « cas de charge » seront ainsi à l'instant t_i telles que :

$${F(t_i)} = {\overline{F}} f(t_i)$$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les chargements imposés pour le « cas de charge » considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si dans le modèle considéré il n'y a pas de chargements imposés, les données associées à cet onglet ne sont pas utilisées.

- Si les chargements imposés ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions de chargement, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction du temps différente pour chacun de ces cas.

Entrer les coefficients de pilotage des chargements

- 1. Choisir le cas de charge pour lequel on souhaite définir la fonction du temps parmi les cas de charge définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées.
- 3. Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».
- 4. Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle.

Onglet 4 : Stockage pour reprise

Cet onglet permet le stockage sur fichier de l'ensemble des éléments (résultats obtenus pour le dernier pas de temps) nécessaires à une éventuelle « reprise ».

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 5 : Stockage pour visualisation des résultats

Cet onglet permet essentiellement de sélectionner les pas de temps pour lesquels on souhaite une sauvegarde des résultats pour une éventuelle exploitation graphique.

Stocker les résultats pour tous les pas de temps

- 1. Cocher la case "Stockage pour tous les temps".
- 2. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Stocker les résultats pour certains pas de temps

- 1. Activer l'onglet "Stockage pour visualisation des résultats".
- 2. Vérifier que la case "Stockage pour tous les temps" n'est pas cochée.
- 3. Sélectionner dans la liste proposée les temps pour lesquels on souhaite un stockage à l'aide du bouton gauche de la souris.
- 4. Les temps sélectionnés peuvent être « désélectionnés » à l'aide du bouton droit de la souris.
- 5. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Onglet 6 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Caractéristiques des pas de temps,
- Masse de la structure,
- Caractéristiques des fonctions de « pilotage » (fonctions du temps pour les conditions aux limites en déplacement et les charges imposées).
- Déplacements
- Vitesses
- Accélérations

Définir le contenu du listing

1. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module FLAM

Le module FLAM permet de calculer les charges et modes de flambement des structures élastiques dans le cadre de la théorie linéaire dite du flambement d'Euler. La validité de ce type d'approche nécessite d'une part que les changements de géométrie avant flambement soient négligeables, d'autre part que la structure soit encore intégralement dans son domaine élastique au moment du flambement. La première condition est souvent vérifiée en pratique, sauf sur les structures particulièrement souples. La seconde condition peut être vérifiée a posteriori par comparaison entre le champ de contrainte élastique théorique obtenu pour la charge de flambement et le critère de plasticité des matériaux constitutifs de la structure considérée.

Le module FLAM permet de prendre en compte des sollicitations du type :

$$\{F\} = \{F_1\} + \lambda\{F_2\}$$

avec :

- $\{F_1\}$: Charge permanente appliquée à la structure
- $\{F_2\}$: Mode de sollicitation vis à vis duquel on cherche à prévenir le flambement de la structure
- λ : Mesure de l'intensité de la sollicitation $\{F_2\}$

Son objet est précisément de calculer la plus petite valeur λ^* de λ , qui provoquerait la ruine de la structure par flambement.

Le module FLAM est basé sur la recherche du premier mode propre du système algébrique:

$$[K - Kg(F_1)] \{\Delta U^*\} = \lambda^* [Kg(F_2)] \{\Delta U^*\}$$

avec :

- *K* : Matrice de rigidité usuelle de la structure en petites déformations
- $Kg(F_1)$: Matrice de rigidité géométrique initiale, associée à la sollicitation $\{F_1\}$
- $Kg(F_2)$: Matrice de rigidité géométrique initiale, associée à la sollicitation $\{F_2\}$
 - $K_{s}(F^{1})$: Matrice associée aux forces de pression suiveuses, dans le cas où la sollicitation F^{1} correspond à une pression fluide ($K_{s} = 0$, sinon),
 - $K_s(F^2)$: Matrice associée aux forces de pression suiveuses, dans le cas où la sollicitation F^2 correspond à une pression fluide ($K_s = 0$, sinon),
- λ^* : Valeur propre, donnant l'intensité de la charge de flambement,
- ΔU^* : Mode propre de flambement.

 ΔU^* livre à un facteur multiplicatif arbitraire près (positif ou négatif) le champ de « vitesse » (accroissement du champ de déplacement), que la structure est susceptible de suivre au moment du flambement.

La recherche du premier mode propre du système précédent est basée sur l'algorithme d'itération inverse. Toutefois, certaines applications particulières pouvant nécessiter la recherche de modes d'ordre supérieur à 1, cet algorithme a été couplé à la méthode du sous-espace mise en œuvre dans le module MODE. L'option "Vérification du nombre de modes" permet de s'assurer que les modes obtenus en fin d'itérations sont bien les premiers modes, ce qui n'est pas toujours le cas lorsque les premières valeurs propres du système ci-dessus sont « proches » les unes des autres.

Si tel n'est pas le cas, il est prévu de pouvoir fournir dans le jeu de données une valeur de shift, VD, permettant par un choix adéquat de forcer la convergence de l'algorithme vers les premiers modes correspondant à des valeurs propres les plus proches de VD. On cherchera pour cela, soit à partir d'un ordre de grandeur connu, soit par tâtonnement, à donner à VD une valeur proche de la valeur λ^{*1} cherchée, tout en veillant à ce que VD soit strictement inférieure à λ^{*1} . Le cas contraire, $\lambda^{*1} > VD$, conduirait dans le processus de résolution à un pivot négatif avec arrêt du programme.

Le shift VD peut être également introduit de façon à accélérer la convergence de l'algorithme. A précision donnée, le nombre d'itérations requis est en effet d'autant plus faible que VD est choisi proche du niveau de flambement, λ^{*1} .

Les sollicitations $\{F_1\}$ et $\{F_2\}$ sont respectivement définies par les deux premiers cas de charges associés au modèle considéré. Si un seul cas de charge est défini, ce dernier correspond à la sollicitation $\{F_2\}$; $\{F_1\}$ étant dans ce cas considéré comme nul.

Le module FLAM fournit successivement pour chacun des modes de flambement calculé :

- le facteur de charge final λ^{\star} obtenu en fin d'itération ,
- le mode propre de flambement ΔU^{\star} ,
- le champ de contrainte élastique au moment du flambement sous la sollicitation $\{F\} = \{F_1\} + \lambda^* \{F_2\}$
- Le module FLAM est utilisable avec les familles d'éléments de massif ou d'éléments structurels mécaniques de type « poutres » (éléments PB2 et PT2).

Onglet 1 : Paramètres généraux

Cet onglet permet la définition du mode de calcul considéré et des éventuels paramètres de calcul des modes propres.

Entrer les paramètres généraux pour trouver p modes propres

- 1. Activer l'onglet « Paramètres généraux ».
- 2. Définir la valeur propre donnée VD. Les modes propres cherchés seront ceux dont les valeurs propres associées seront les plus proches de VD.
- 3. Définir le nombre de modes de flambement recherchés (Nvalp).
- 4. Définir la dimension du sous espace utilisé pour la recherche des modes de flambement (NSE). Si cette valeur est donnée nulle, le logiciel prendra par défaut Min(Nvalp+8, 2*Nvalp).
- 5. Définir le nombre maximum d'itérations autorisé.
- 6. Définir la précision relative souhaitée pour les valeurs propres.
- 7. Cocher la case "Vérification du nombre de modes" si l'on souhaite vérifier que le nombre de valeurs propres trouvées est égal au nombre de valeurs propres existant dans l'intervalle considéré.
- Si VD = 0., on recherche ainsi le nombre de valeurs propres inférieures ou égales à la valeur maximale des NVALP valeurs propres trouvées. Si VD ≠ 0., le programme recherche le nombre de valeurs propres comprises dans l'intervalle [VD A , VD + A] avec : A =Max₁(|VALP(I)-VD|) pour I = 1 à NVALP.

Onglet 2 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Valeurs propres,
- Vecteurs propres.

Définir le contenu du listing

- 1. Activer l'onglet "Contenu du listing".
- 2. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module LINC

Le module LINC permet de calculer la réponse en régime permanent d'une structure à comportement linéaire, avec amortissement, soumise à une sollicitation harmonique, F(t), définie par :

$${F(t)} = {F_1}.Cos(\omega t) + {F_2}.Sin(\omega t)$$

avec :

- $\{F_1\}, \{F_2\}$: Vecteurs réels définissant la sollicitation imposée. _
- ω : Pulsation de la sollicitation imposée.

De manière pratique, le vecteur F1 est défini par le premier cas de charge associé au modèle, tandis que F2 est défini par le second cas de charge. Dans le cas où un seul cas de charge est défini, le vecteur F2 est considéré nul.

La réponse de la structure s'obtient en résolvant le système linéaire à variables complexes :

$$([K]+i[C]\omega-[M]\omega^2)\{V\}=\{F\}$$

avec :

- V: Vecteur des déplacements nodaux complexes de la structure considérée.
- [M], [C], [K] : Matrices de masse, amortissement et rigidité de la structure. _

La réponse dans le temps de la structure est ainsi égale à:

$$\left\{V(t)\right\} = \operatorname{Re}\left\{Ve^{i(\omega t + \phi)}\right\}$$

où :

$$\{V(t)\} = \{V_1\}.Cos(\omega t + \phi) - \{V_2\}.Sin(\omega t + \phi)$$

avec V1 et V2 vecteurs réels.

De manière similaire à celle évoquée pour les efforts imposés, il est possible d'imposer les parties réelles et imaginaires des déplacements par l'intermédiaire de deux ensembles de conditions aux limites.

Il est possible de définir une matrice d'amortissement de type Rayleigh s'exprimant sous la forme : [C] = a.[K] + b.[M]

où a et b sont deux constantes définies par l'utilisateur.

Si l'on connaît les pourcentages d'amortissement critique £1, £2 associés à 2 modes propres de la structure, de pulsations ω_1 , ω_2 , on pourra estimer a et b à partir des expressions suivantes :

$$a = \frac{2}{\omega_2^2 - \omega_1^2} (\xi_2 \omega_2 - \xi_1 \omega_1)$$

$$b = \frac{2\omega_1 \omega_2}{\omega_2^2 - \omega_1^2} (\xi_1 \omega_2 - \xi_2 \omega_1)$$

Les données nécessaires à ce module de calcul sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Paramètres généraux

Cet onglet permet la définition des paramètres caractérisant la discrétisation temporelle et un éventuel amortissement de Rayleigh.

Entrer les paramètres généraux

- 1. Activer l'onglet « Paramètres généraux ».
- 2. Définir la fréquence de la sollicitation imposée.
- 3. Cocher la case « Prise en compte d'un amortissement de Rayleigh » si l'on souhaite faire intervenir un amortissement.
- 4. Si amortissement, définir les coefficients a et b caractérisant l'amortissement de Rayleigh.
- Dans cette version du logiciel, il n'est possible d'imposer qu'une seule valeur de fréquence.
- Noter que ces paramètres ne seront pris en compte que pour les éléments pour lesquels un amortissement particulier n'a pas été défini dans « PROPRIETES ».

Onglet 2 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Données du calcul,
- Résultats principaux,
- Résultats complémentaires.

Définir le contenu du listing

- 1. Activer l'onglet "Contenu du listing".
- 2. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module LINH

Le module LINH permet de calculer la réponse d'une structure, à comportement linéaire, soumise à une sollicitation harmonique sans amortissement F(t) du type :

$${F(t)} = {F}.Cos(\omega t + \rho)$$

avec :

 $\{F\}_{:}$ Vecteur définissant la sollicitation imposée.

- ω : Pulsation de la sollicitation imposée.
- ρ : Déphasage de la sollicitation imposée.

La réponse de la structure s'obtient en résolvant le système linéaire défini ci-dessous :

$$([K]-[M]\omega^2)\{V\}=\{F\}$$

avec :

- V: Vecteur des déplacements nodaux de la structure considérée.
- [M], [K]: Matrices de masse et rigidité de la structure.

Les données nécessaires à ce module de calcul sont définies par l'intermédiaire d'une boîte de dialogue contenant l'onglet ci-dessous.

Onglet 1 : Paramètres généraux

Cet onglet permet la définition de la fréquence de la sollicitation imposée.

Entrer les paramètres généraux

- 1. Activer l'onglet « Paramètres généraux ».
- 2. Définir la valeur de la fréquence de la sollicitation imposée.

Module MODE

Le module MODE a pour objet la recherche des p valeurs propres λ_i les plus proches d'une valeur donnée λ_0 et des p vecteurs propres { Φ_i } associés satisfaisant la relation suivante :

$$[K] \{ \Phi_i \} = \lambda_i [M] \{ \Phi_i \} \quad (i = 1, p)$$

avec :

[M], [K] : Matrices de masse et rigidité de la structure.

La méthode utilisée pour rechercher ces modes propres est la méthode du sous-espace.

Ce module peut également être utilisé pour rechercher plus simplement le nombre de valeurs propres inférieures à une valeur donnée λ_0 . On compte dans ce cas le nombre de pivots négatifs rencontrés lors de la factorisation de la matrice :

$$[K] - \lambda_0[M]$$

Les données nécessaires au module de calcul MODE sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Paramètres généraux

Cet onglet permet la définition du mode de calcul considéré et des éventuels paramètres de calcul des modes propres.

Entrer les paramètres généraux pour trouver le nombre de valeurs propres inférieures à une valeur donnée

- 1. Cocher la case « Chercher le nombre de fréquences inférieures à une valeur donnée ».
- 2. Définir la fréquence donnée VD.

Entrer les paramètres généraux pour trouver p modes propres

- 1. Cocher la case « Chercher modes propres de vibration ».
- 2. Définir la fréquence donnée VD. Les modes propres cherchés seront ceux dont les fréquences seront les plus proches de VD.
- 3. Définir le nombre de modes propres recherchés (Nvalp).
- 4. Définir la dimension du sous espace utilisé pour la recherche des modes propres (NSE). Si cette valeur est donnée nulle, le logiciel prendra par défaut Min(Nvalp+8, 2*Nvalp).
- 5. Définir le nombre maximum d'itérations autorisé.
- 6. Définir la précision relative souhaitée pour les valeurs propres.
- 7. Cocher la case "Vérification du nombre de modes" si l'on souhaite vérifier que le nombre de valeurs propres trouvées est égal au nombre de valeurs propres existant dans l'intervalle considéré.
- Si VD = 0., on recherche ainsi le nombre de valeurs propres inférieures ou égales à la valeur maximale des NVALP valeurs propres trouvées. Si VD ≠ 0., le programme recherche le nombre de valeurs propres comprises dans l'intervalle [VD A , VD + A] avec: A =Max_I(|VALP(I)-VD|) pour I = 1 à NVALP.

Onglet 2 : Stockage modes

Cet onglet permet le stockage sur fichier des caractéristiques des modes de vibration pour une éventuelle utilisation à l'aide du module SUMO (Superposition modale).

Définir un stockage pour reprise

- 1. Cocher la case "Stockage des modes de vibration".
- 2. Entrer le nom du fichier de stockage.

Onglet 3 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Masse de la structure,
- Valeurs propres,
- Vecteurs propres.

Définir le contenu du listing

1. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module SUMO

Le module SUMO effectue le calcul par superposition modale de la réponse d'une structure soumise à une sollicitation dynamique.

Deux types de problèmes sont envisagés :

- l'estimation de la réponse maximale par calcul spectral (superposition de type SRSS ou CQC),
- le calcul de la réponse complète.

Les données nécessaires au module de calcul SUMO sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Paramètres généraux

Cet onglet permet la définition du mode de calcul considéré et les paramètres associés à la base des modes propres utilisée.

Entrer les paramètres généraux

- 1. Choisir le type de calcul en cochant la case correspondante.
- 2. Définir le nom du fichier contenant la base des modes propres considérée (sauvegardée par une précédente utilisation du module MODE).
- 3. Définir le nombre de modes de cette base.
- 4. Définir dans la grille réservée à cet effet le pourcentage d'amortissement critique associé à chacun des modes retenus.
- 5. Sélectionner dans la liste proposée les modes retenus à l'aide du bouton gauche de la souris.
- 6. Les modes sélectionnés peuvent être « désélectionnés » à l'aide du bouton droit de la souris.

Onglet 2 : Paramètres calcul spectral

Cet onglet permet la définition des paramètres du calcul spectral.

Cet onglet n'est activable que si le mode de calcul choisi est de type « Calcul spectral ».

Définir les paramètres du calcul spectral

- 1. Choisir le type de spectre considéré (déplacement ou accélération).
- 2. Définir le spectre par la donnée de couples (T (période), Spectre (m ou m/s2)).

Onglet 3 : Paramètres analyse temporelle

Cet onglet permet la définition de la discrétisation temporelle considérée.

Cet onglet n'est activable que si le mode de calcul choisi est « Calcul fonction du temps ».

Définir la discrétisation en temps

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t₀ du temps.
- 3. Donner la valeur considérée du pas de temps.

Onglet 4 : Pilotage des conditions de chargement

Cet onglet permet de définir l'évolution en fonction du temps des conditions de chargement. Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Cet onglet n'est activable que si le mode de calcul choisi est « Calcul fonction du temps ».

Les conditions de chargement imposées dans un « cas de charge » seront ainsi à l'instant ti telles que : $\{F(t_i)\} = \{\overline{F}\} f(t_i)$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les chargements imposés pour le « cas de charge » considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si dans le modèle considéré il n'y a pas de chargements imposés, les données associées à cet onglet ne sont pas utilisées.
- Si les chargements imposés ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles

des conditions de chargement, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction du temps différente pour chacun de ces cas.

Entrer les coefficients de pilotage des chargements

- Choisir le cas de charge pour leguel on souhaite définir la fonction du temps parmi les cas de charge définis dans le modèle.
- Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées. 2.
- 3. Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle.

Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 5 : Stockage pour visualisation des résultats

Cet onglet permet essentiellement de sélectionner les pas de temps pour lesquels on souhaite une sauvegarde des résultats pour une éventuelle exploitation graphique.

Cet onglet n'est activable que si le mode de calcul choisi est « Calcul fonction du temps ».

Stocker les résultats pour tous les pas de temps

- Cocher la case "Stockage pour tous les temps". 1.
- 2. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Stocker les résultats pour certains pas de temps

- 1. Vérifier que la case "Stockage pour tous les temps" n'est pas cochée.
- Sélectionner dans la liste proposée les temps pour lesquels on souhaite un stockage à l'aide du 2. bouton gauche de la souris.
- Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ». 3.

Les temps sélectionnés peuvent être « désélectionnés » à l'aide du bouton droit de la souris.

Onglet 6 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Données du calcul,
- Résultats principaux,
- Résultats complémentaires.

Définir le contenu du listing

1. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module DTNL

Bien que les explications suivantes prennent pour exemple l'équation de la chaleur, le module DTNL permet de traiter de manière générale les problèmes de diffusion transitoire. Le module DTNL permet la résolution de problèmes dans lesquels les caractéristiques de conductivité et les coefficients d'échange peuvent être non linéaires (fonctions de la température).

Le module DTNL permet de calculer l'évolution du champ de température d'une structure, soumise à un chargement thermique volumique et des conditions aux limites données. Les modules sont basés sur la résolution de l'équation de la chaleur, valable en tout point de la structure :

$$c\frac{\partial\theta}{\partial t} - div\left(\underbrace{k}_{\equiv}\overrightarrow{grad}\;\theta\right) = f(x,t)$$

avec f(x,t), terme de source volumique, et sur la prise en compte des 3 types de conditions aux limites usuelles :

- $\Theta = \Theta_{imp}(t)$: Température imposée,
- $q = q_{imp}(t)$: Flux imposé,

-
$$q = \lambda(\Theta_{imp}(t) - \Theta)$$
 : Echange linéaire.

Avec :

- q : Flux entrant dans la structure
- λ : Coefficient d'échange
- $\Theta_{imp}(t)$: Température extérieure imposée
- Θ : Température de peau de la structure

Après discrétisation par la méthode des éléments finis, un tel problème se met sous la forme du système classique d'équations différentielles :

$$[C] \{ \dot{\Theta}(t) \} + [K] \{ \Theta(t) \} = \{ F(t) \}$$

avec :

- $\left\{ \Theta(t)
 ight\}$: Vecteur des températures
- [K] : Matrice de conductivité
- $\begin{bmatrix} C \end{bmatrix}$: Matrice d'emmagasinement
- $\{F(t)\}$: Vecteur second membre

L'intégration de ce système par rapport au temps est basée sur l'algorithme pas à pas de Galerkin.

Onglet 1 : Pas de temps

Cet onglet permet de choisir si l'on souhaite réaliser une étude en régime permanent ou une étude transitoire. Dans le cas d'une étude transitoire cet onglet la définition de la discrétisation temporelle considérée.

Npas Pas de temps

Trois méthodes peuvent être utilisées pour définir les valeurs de temps considérées.

- Pas de temps constant

L'utilisateur définit ici la valeur initiale t_0 du temps et une valeur de pas de temps Δt . Les valeurs de temps prises en compte sont alors :

 $t_1 = t_0 + \Delta T,$ $t_2 = t_1 + \Delta T, \dots$

- Temps définis par valeur absolue

L'utilisateur définit ici directement les Npas+1 valeurs du temps qui seront considérées.

- Pas de temps définis par « groupes »

L'utilisateur définit ici la valeur initiale t_0 du temps et un ensemble de couples de valeurs ni, Δti . On suppose ici que le pas de temps Δti est constant pour ni pas de temps. Les valeurs de temps prises en compte seront ainsi :

```
\begin{split} t_1 &= t_0 + \Delta T 1 \\ t_2 &= t_1 + \Delta T 1 \\ ... \\ t_{n1} &= t_{n1-1} + \Delta T 1 \\ t_{n1+1} &= t_{n1} + \Delta T 2 \\ ... \end{split}
```

Définir la discrétisation en temps par pas constants

- 1. Choisir l'option « Analyse en régime transitoire »
- 2. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 3. Définir valeur initiale t₀ du temps.
- 4. Choisir l'option « Pas de temps constant ».
- 5. Donner la valeur considérée du pas de temps.

Définir la discrétisation par la donnée des temps en valeurs absolues

- 1. Choisir l'option « Analyse en régime transitoire »
- 2. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 3. Définir valeur initiale t_0 du temps.
- 4. Choisir l'option « Temps donnés par valeur absolue ».
- 5. Définir les Npas valeurs du temps complétant la valeur initiale dans le tableau réservé à cet effet.

Définir la discrétisation par « groupage » des pas de temps

- 1. Choisir l'option « Analyse en régime transitoire »
- 2. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 3. Définir valeur initiale t₀ du temps.
- 4. Choisir l'option « Pas de temps donnés par groupe ».
- 5. « Ajouter » autant de fois qu'il y a de groupes de pas de temps considérés.
- 6. Définir les couples ni, ∆ti dans le tableau réservé à cet effet.

Il est important de noter ici que la somme des valeurs ni doit être égale à Npas.

Pour un calcul en régime permanent, donner la valeur du nombre de temps considérés Npas + 1 = 1, et indiquer simplement la valeur initiale t_0 du temps.

Onglet 2 : Méthode de résolution

Cet onglet permet le choix et la définition des paramètres de la méthode itérative utilisée pour le calcul.

Entrer les paramètres du processus itératif

- 1. Choisir la méthode de résolution utilisée (Méthode du point fixe ou méthode de Newton).
- 2. Définir le nombre maximal d'itérations autorisées par pas de temps.
- 3. Définir la tolérance relative sur les valeurs de températures nodales obtenues.
- 4. On choisira classiquement : $10^{-3} \le tolérance \le 10^{-2}$
- 5. Choisir la méthode de résolution des systèmes linéaires ("Pardiso", "Multifrontale" ou méthode directe)
- Une tolérance telle que $10^{-3} \le$ tolérance $\le 10^{-2}$ sera généralement utilisée.

Onglet 3 : Pilotage des conditions aux limites sur les inconnues principales

Cet onglet permet de définir l'évolution en fonction du temps des conditions imposées sur les "inconnues principales". Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions imposées sur les inconnues principales dans un « ensemble de conditions aux limites » seront ainsi à l'instant t_i telles que :

$$\{U(t_i)\} = \{\overline{U}\} f(t_i)$$

avec :

- \overline{U} : Vecteur des inconnues principales imposées dans l'ensemble de conditions aux limites considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si les inconnues principales imposées ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$

Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions aux limites sur les inconnues principales, il convient de définir plusieurs ensembles de conditions aux limites (Voir chapitre : « Initialisation des conditions aux limites »). Il est alors possible de définir une fonction du temps différente pour chacun de ces ensembles.

Entrer les coefficients de pilotage des conditions limites

- 1. Choisir le cas pour lequel on souhaite définir la fonction du temps parmi les ensembles de conditions aux limites définis dans le modèle.
- Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées (Colonne 2. notée « Coefficients »).
- Pour chaque valeur de temps définir le coefficient de « relaxation » considéré. Ce coefficient doit 3. être égal à 1 (Valeur par défaut) si les conditions aux limites sont prises en compte pour le temps considéré et égal à 0 dans le cas contraire.
- Répéter les étapes 2 à 4 pour tous les ensembles de conditions aux limites définis dans le modèle. 4.
- Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 4 : Pilotage des conditions de chargement

Cet onglet permet de définir l'évolution en fonction du temps des conditions de chargement. Cette évolution est caractérisée par la donnée d'une valeur f(ti) pour chacune des valeurs de temps ti considérées.

Les conditions de chargement imposées dans un « cas de charge » seront ainsi à l'instant titelles que :

$${F(t_i)} = {\overline{F}} f(t_i)$$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les chargements imposés pour le « cas de charge » considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si dans le modèle considéré il n'y a pas de chargements imposés, les données associées à cet onglet ne sont pas utilisées.

Si les chargements imposés ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$

Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions de chargement, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction du temps différente pour chacun de ces cas.

Entrer les coefficients de pilotage des chargements

- 1. Choisir le cas de charge pour lequel on souhaite définir la fonction du temps parmi les cas de charge définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées.
- Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle. 3.

Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 5 : Stockage pour reprise

Cet onglet permet de stocker sur fichier les résultats de calcul du dernier pas de temps, soit en vue d'une reprise du calcul en diffusion, soit en vue d'un calcul en mécanique prenant en compte un chargement d'origine thermique ou équivalent.

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 6 : Stockage pour visualisation des résultats

Cet onglet permet essentiellement de sélectionner les pas de temps pour lesquels on souhaite une sauvegarde des résultats pour une éventuelle exploitation graphique.

Stocker les résultats pour tous les pas de temps

- 1. Cocher la case "Stockage pour tous les temps".
- 2. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Stocker les résultats pour certains pas de temps

- 1. Vérifier que la case "Stockage pour tous les temps" n'est pas cochée.
- 2. Sélectionner dans la liste proposée les temps pour lesquels on souhaite un stockage à l'aide du bouton gauche de la souris.
- 3. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».
- Les temps sélectionnés peuvent être « désélectionnés » à l'aide du bouton droit de la souris.

Onglet 7 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Caractéristiques des pas de temps,
- Caractéristiques des fonctions de « pilotage » (fonctions du temps pour les conditions aux limites en températures et les charges imposées).
- Résultats principaux
- Résultats complémentaires

Définir le contenu du listing

1. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module NSAT

Le module NSAT permet la résolution des problèmes d'écoulement en milieu poreux non saturé. Les charges hydrauliques en chaque nœud constituent le résultat principal de ce module tandis que les résultats complémentaires obtenus sont :

- Teneur en eau
- Gradients
- Flux

Les données nécessaires au module de calcul NSAT sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Pas de temps

Cet onglet permet de choisir si l'on souhaite réaliser une étude en régime permanent ou une étude transitoire. Dans le cas d'une étude transitoire cet onglet la définition de la discrétisation temporelle considérée.

Npas Pas de temps

Trois méthodes peuvent être utilisées pour définir les valeurs de temps considérées.

- Pas de temps constant

L'utilisateur définit ici la valeur initiale t_0 du temps et une valeur de pas de temps Δt . Les valeurs de temps prises en compte sont alors :

 $t_1 = t_0 + \Delta T,$ $t_2 = t_1 + \Delta T, \dots$

- Temps définis par valeur absolue

L'utilisateur définit ici directement les Npas+1 valeurs du temps qui seront considérées.

- Pas de temps définis par « groupes »

L'utilisateur définit ici la valeur initiale t₀ du temps et un ensemble de couples de valeurs ni, Δ ti. On suppose ici que le pas de temps Δ ti est constant pour ni pas de temps. Les valeurs de temps prises en compte seront ainsi :

```
\begin{split} t_1 &= t_0 + \Delta T 1 \\ t_2 &= t_1 + \Delta T 1 \\ & \cdots \\ t_{n1} &= t_{n1-1} + \Delta T 1 \\ t_{n1+1} &= t_{n1} + \Delta T 2 \\ & \cdots \end{split}
```


Définir la discrétisation en temps par pas constants

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t₀ du temps.
- 3. Choisir l'option « Pas de temps constant ».
- 4. Donner la valeur considérée du pas de temps.

Définir la discrétisation par la donnée des temps en valeurs absolues

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t₀ du temps.
- 3. Choisir l'option « Temps donnés par valeur absolue ».
- 4. Définir les Npas valeurs du temps complétant la valeur initiale dans le tableau réservé à cet effet.

Définir la discrétisation par « groupage » des pas de temps

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t₀ du temps.
- 3. Choisir l'option « Pas de temps donnés par groupe ».
- 4. « Ajouter » autant de fois qu'il y a de groupes de pas de temps considérés.
- 5. Définir les couples (ni, Δ ti) dans le tableau réservé à cet effet.

Il est important de noter ici que la somme des valeurs ni doit être égale à Npas.

Onglet 2 : Méthode de résolution

Cet onglet permet le choix et la définition des paramètres de la méthode itérative utilisée pour le calcul.

Entrer les paramètres du processus itératif

- 1. Activer l'onglet « Méthode de résolution ».
- 2. Choisir la méthode de résolution utilisée (Méthode du point fixe ou méthode de Newton).
- 3. Définir le nombre maximal d'itérations autorisées par pas de temps.
- 4. Définir la tolérance relative sur les valeurs de la charge hydraulique.
- 5. On choisira classiquement : $10^{-3} \le tolérance \le 10^{-2}$
- 6. Choisir la méthode de résolution des systèmes linéaires (méthode directe ou méthode « multifrontale »)

Onglet 3 : Verticale

Cet onglet permet la définition de la verticale.

Définir la verticale

- 1. Activer l'onglet « Verticale ».
- 2. Définir les composantes du vecteur unitaire vertical ascendant dans le repère ayant servi à définir le maillage.

Onglet 4 : Pilotage des conditions aux limites sur les inconnues principales

Cet onglet permet de définir l'évolution en fonction du temps des conditions imposées sur les "inconnues principales". Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions imposées sur les inconnues principales dans un « ensemble de conditions aux limites » seront ainsi à l'instant t_i telles que :

$$\{U(t_i)\} = \{\overline{U}\} f(t_i)$$

avec :

- \overline{U} : Vecteur des inconnues principales imposées dans l'ensemble de conditions aux limites considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si les inconnues principales imposées ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$

Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions aux limites sur les inconnues principales, il convient de définir plusieurs ensembles de conditions aux limites (Voir chapitre : « Initialisation des conditions aux limites »). Il est alors possible de définir une fonction du temps différente pour chacun de ces ensembles.

Entrer les coefficients de pilotage des conditions limites

- 1. Choisir le cas pour lequel on souhaite définir la fonction du temps parmi les ensembles de conditions aux limites définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées (Colonne notée « Coefficients »).
- 3. Pour chaque valeur de temps définir le coefficient de « relaxation » considéré. Ce coefficient doit être égal à 1 (Valeur par défaut) si les conditions aux limites sont prises en compte pour le temps considéré et égal à 0 dans le cas contraire.
- 4. Répéter les étapes 2 à 4 pour tous les ensembles de conditions aux limites définis dans le modèle.
- Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 5 : Pilotage des conditions de chargement

Cet onglet permet de définir l'évolution en fonction du temps des conditions de chargement. Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions de chargement imposées dans un « cas de charge » seront ainsi à l'instant t_i telles que :

$${F(t_i)} = {\overline{F}} f(t_i)$$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les chargements imposés pour le « cas de charge » considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.

- Si dans le modèle considéré il n'y a pas de chargements imposés, les données associées à cet onglet ne sont pas utilisées.
- Si les chargements imposés ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions de chargement, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction du temps différente pour chacun de ces cas.

Entrer les coefficients de pilotage des chargements

- 1. Choisir le cas de charge pour lequel on souhaite définir la fonction du temps parmi les cas de charge définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées.
- 3. Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle.
- Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 6 : Stockage pour reprise

Cet onglet permet de stocker sur fichier les résultats de calcul du dernier pas de temps en vue d'une reprise.

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 7 : Stockage pour visualisation des résultats

Cet onglet permet essentiellement de sélectionner les pas de temps pour lesquels on souhaite une sauvegarde des résultats pour une éventuelle exploitation graphique.

Stocker les résultats pour tous les pas de temps

- 1. Cocher la case "Stockage pour tous les temps".
- Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires » (gradients et flux en sus).

Stocker les résultats pour certains pas de temps

- 1. Vérifier que la case "Stockage pour tous les temps" n'est pas cochée.
- 2. Sélectionner dans la liste proposée les temps pour lesquels on souhaite un stockage à l'aide du bouton gauche de la souris.
- 3. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Les temps sélectionnés peuvent être « désélectionnés » à l'aide du bouton droit de la souris.

Onglet 8 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Caractéristiques des pas de temps,

- Caractéristiques des fonctions de « pilotage » (fonctions du temps pour les conditions aux limites en charge).

- Inconnue principale (Charge)
- Gradients
- Vitesses

Définir le contenu du listing

1. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module TEXO

Le module TEXO est principalement un module de résolution d'équation de la chaleur, dans lequel il a été introduit le terme de source volumique dQ/dt. Il permet ainsi de simuler le champ de température qui se développe dans une pièce en béton récemment coulée. Ce phénomène a pour source le dégagement de chaleur qui accompagne la réaction d'hydratation du ciment, lors de la prise du béton.

Le module TEXO permet avec un jeu de données adéquat de prendre en compte les effets d'un traitement thermique, tel que l'étuvage, la pose de bâches isolantes ou de résistances chauffantes. TEXO permet également de simuler les effets du coulage d'une nouvelle partie en béton contre une partie en béton déjà en place. L'ensemble des calculs repose sur les résultats de l'essai dit "QAB" (Quasi-Adiabatique) qui doit être fournis en données. Il permet de caractériser la réactivité du ciment utilisé.

Après utilisation du module TEXO, il est ensuite possible, à l'aide d'un calcul mené dans le domaine mécanique (cf. module MEXO), d'en déduire les contraintes d'origine thermique induites dans la pièce.

TEXO fournit les résultats à chaque pas de temps ou aux pas de temps retenus par l'utilisateur :

- Résultats principaux : champ de température et degré d'avancement de la réaction (degré d'hydratation),

- Résultats complémentaires : gradient et flux.

Les données nécessaires au module de calcul TEXO sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Pas de temps

Cet onglet permet la définition de la discrétisation temporelle considérée.

Npas + 1 Valeurs de temps t_0 t_1 t_2 t_3 t_3 t_1 t_2 t_3 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_1 t_2 t_3 t_3 t_3 t_1 t_3 t_3 t_1 t_2 t_3 t_3 t_3 t_1 t_3 t_3 t_3 t_1 t_3 t_3 t

Trois méthodes peuvent être utilisées pour définir les valeurs de temps considérées.

- Pas de temps constant

L'utilisateur définit ici la valeur initiale t_0 du temps et une valeur de pas de temps Δt . Les valeurs de temps prises en compte sont alors :

 $\mathbf{t}_1 = \mathbf{t}_0 + \Delta \mathbf{T},$

 $\mathbf{t}_2 = \mathbf{t}_1 + \Delta \mathsf{T}, \dots$

- Temps définis par valeur absolue

L'utilisateur définit ici directement les Npas+1 valeurs du temps qui seront considérées.

- Pas de temps définis par « groupes »

L'utilisateur définit ici la valeur initiale t₀ du temps et un ensemble de couples de valeurs ni, Δ ti. On suppose ici que le pas de temps Δ ti est constant pour ni pas de temps. Les valeurs de temps prises en compte seront ainsi :

$$\begin{split} t_1 &= t_0 + \Delta T 1 \\ t_2 &= t_1 + \Delta T 1 \\ ... \\ t_{n1} &= t_{n1-1} + \Delta T 1 \\ t_{n1+1} &= t_{n1} + \Delta T 2 \end{split}$$

Définir la discrétisation en temps par pas constants

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t_0 du temps.
- 3. Choisir l'option « Pas de temps constant ».
- 4. Donner la valeur considérée du pas de temps.

Définir la discrétisation par la donnée des temps en valeurs absolues

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t₀ du temps.
- 3. Choisir l'option « Temps donnés par valeur absolue ».
- 4. Définir les Npas valeurs du temps complétant la valeur initiale dans le tableau réservé à cet effet.

Définir la discrétisation par « groupage » des pas de temps

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t₀ du temps.
- 3. Choisir l'option « Pas de temps donnés par groupe ».
- 4. « Ajouter » autant de fois qu'il y a de groupes de pas de temps considérés.
- 5. Définir les couples (ni, Δ ti) dans le tableau réservé à cet effet.

ll est important de noter ici que la somme des valeurs ni doit être égale à Npas.

Onglet 2 : Processus itératif

Cet onglet permet la définition des paramètres de la méthode itérative utilisée pour le calcul.

Entrer les paramètres du processus itératif

- 1. Définir le nombre maximal d'itérations autorisées par pas de temps.
- 2. Définir la tolérance relative sur les valeurs de températures nodales obtenues.
- 3. On choisira classiquement : $10^{-3} \le tolérance \le 10^{-2}$
- 4. Choisir la méthode de résolution des systèmes linéaires (méthode directe ou méthode « multifrontale »)

Onglet 3 : Pilotage des conditions aux limites en température en fonction du temps

Cet onglet permet de définir l'évolution en fonction du temps des éventuelles températures imposées. Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées (définies dans l'onglet « pas de temps »).

Les températures imposées dans un « ensemble de conditions aux limites » seront ainsi à l'instant t_i telles que :

$$\Theta^{j}(t_{i}) = \overline{\Theta}^{j} f(t_{i})$$

avec :

- $\overline{\Theta}^{j}$: Température imposée au nœud j dans l'ensemble de conditions aux limites considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.

- Si dans le modèle considéré il n'y a pas de températures imposées, les données associées à cet onglet ne sont pas utilisées.
- Si les températures imposées ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions aux limites en température, il convient de définir plusieurs ensembles de conditions aux limites (Voir chapitre : « Initialisation des conditions aux limites »). Il est alors possible de définir une fonction du temps différente pour chacun de ces ensembles.

Entrer les coefficients de pilotage des conditions limites

- 1. Choisir le cas pour lequel on souhaite définir la fonction du temps parmi les ensembles de conditions aux limites définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées (Colonne notée « Coef. »).
- 3. Pour chaque valeur de temps définir le coefficient de « relaxation » considéré. Ce coefficient doit être égal à 1 (Valeur par défaut) si les conditions aux limites sont prises en compte pour le temps considéré et égal à 0 dans le cas contraire.
- 4. Répéter les étapes 2 à 4 pour tous les ensembles de conditions aux limites définis dans le modèle.
- Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 4 : Pilotage des « charges » en fonction du temps

Cet onglet permet de définir l'évolution en fonction du temps des éventuelles « charges » (flux ou débits) imposées. Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées (définies dans l'onglet « pas de temps »).

Les charges imposées dans un « cas de charge » seront ainsi à l'instant t_i telles que :

$${F(t_i)} = {F}.f(t_i)$$

avec :

- $\{F\}$: Vecteur caractérisant les charges imposées pour le « cas de charge » considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si dans le modèle considéré il n'y a pas de charges imposées, les données associées à cet onglet ne sont pas utilisées.
- Si les charges imposées ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions de charges, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction du temps différente pour chacun de ces cas.

Entrer les coefficients de pilotage des charges

- 1. Choisir le cas de charge pour lequel on souhaite définir la fonction du temps parmi les cas de charge définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées.
- 3. Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle.

Les Npas + 1 valeurs caractérisant la fonction *F* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 5 : Stockage pour reprise

Cet onglet permet le stockage sur fichier de l'ensemble des éléments (résultats obtenus pour le dernier pas de temps) nécessaires à une éventuelle « reprise ».

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 6 : Stockage pour visualisation des résultats

Cet onglet permet essentiellement de sélectionner les pas de temps pour lesquels on souhaite une sauvegarde des résultats. Cette sauvegarde pourra être utilisée :

- Pour une éventuelle exploitation graphique des résultats,
- Pour une analyse mécanique à l'aide du module MEXO.

Stocker les résultats pour tous les pas de temps

- 1. Cocher la case "Stockage pour tous les temps".
- 2. Choisir le type de stockage « Résultats principaux » (Inconnues primaires : Champ de température et degré d'hydratation) ou « Résultats principaux et complémentaires » (gradients et flux en sus).

Stocker les résultats pour certains pas de temps

- 1. Vérifier que la case "Stockage pour tous les temps" n'est pas cochée.
- 2. Sélectionner dans la liste proposée les temps pour lesquels on souhaite un stockage à l'aide du bouton gauche de la souris.
- 3. Choisir le type de stockage « Résultats principaux » (Inconnues primaires : Champ de température et degré d'hydratation) ou « Résultats principaux et complémentaires » (gradients et flux en sus).

Les temps sélectionnés peuvent être « dé-sélectionnés » à l'aide du bouton droit de la souris.

Onglet 7 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Caractéristiques des pas de temps,

- Caractéristiques des fonctions de « pilotage » (fonctions du temps pour les conditions aux limites en températures et les charges imposées).

- Inconnues principales Champ de température et degré d'hydratation
- Gradients
- Flux thermiques

Définir le contenu du listing

1. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Onglet 8 : Essai QAB

L'ensemble des calculs réalisés avec le module TEXO repose sur les résultats d'un essai calorimétrique qui doivent être fournis en données. L'essai consiste à enregistrer, en fonction du temps, la courbe de température d'un échantillon de béton placé dans un calorimètre. La figure ci-dessous montre à titre d'exemple cette courbe en condition adiabatique ($-div\mathbf{q} = 0$) pour un béton ordinaire, B25, avec un rapport eau/ciment = 0,6 et pour un béton à hautes performances, B80, avec un rapport e/c = 0,4.

Les résultats de cet essai calorimétriques sont ainsi caractérisés par les éléments suivants :

- Un ensemble de triplets de valeurs (Temps, Teta, TetaE),

Avec :

- Temps : Valeur du temps au moment de chaque mesure,
- Teta : Valeur de la température de l'échantillon au moment de chaque mesure,
- *TetaE* : Valeur de la température à l'extérieur du calorimètre au moment de chaque mesure.
- Trois coefficients *A*, *B*, *C* caractérisant les déperditions thermiques du calorimètre. La puissance perdue peut s'exprimer à l'aide de ces trois coefficients comme suit :

$$P = \frac{A}{C}(Teta - TetaE) + \frac{B}{C}(Teta - TetaE)^{2}$$

CM : La capacité calorifique de l'échantillon

- XK : constante de la loi d'Arrhénius (en l'absence d'information sur cette valeur, XK = 5500).

Histoires de température T^{ad}(t) mesurées dans un essai adiabatique pour un béton ordinaire (B25) et pour un béton à hautes performances (B80).

C	Analysis	settings for the mo	odule TEXO	×
Time steps	Calorimetre hea	at loss coefficient		
General parameters	Read from file			
Boundary conditions	A		0.000000	
Storage for subsequent calcul:	В		0.000000	
Storage for visualization of res	С		0.000000	
Content of the listing	Calorific capacit	y [W sec/(m3 degC)]	0.000e+000	
QAB adiabatic test	Arrhenius consta	ant [degC]	0.000	
	T [sec]	TETA [degC]	TETAE [degC]	Add
				Delete
< >>				
			C	K Cancel

Définir les caractéristiques de l'essai QAB

- 1. Définir les trois coefficients *A*, *B*, *C* caractérisant les dépenditions thermiques du calorimètre, la capacité calorifique de l'échantillon *CM* et la constante de la loi d'Arrhénius *CK*.
- 2. Définir les triplets Temps, Teta et TetaE dans la grille réservée à cet effet,
- 3. Les caractéristiques de l'essai QAB peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ». Ce fichier formaté doit contenir les informations suivantes :
 - - NbTriplets : Nombre de triplets de valeurs Temps, Teta et TetaE .
 - - Triplets : Triplets de valeurs Temps, Teta et TetaE .
 - A,B,C
 - CM
 - - XK

Module MEXO

Le module MEXO est principalement un module de résolution mécanique élastique incrémentale avec des conditions aux limites en déplacement (et éventuellement du chargement), dans lequel on prend en compte la dilatation et le retrait d'origine thermique et chimique. A la suite d'un calcul avec le module TEXO, on peut déterminer, à l'aide du module MEXO, les effets mécaniques (déplacements, contraintes) de l'évolution de la température et du degré d'hydratation dans les structures en béton au jeune âge, et prédire le risque de la fissuration.

Les données nécessaires au module de calcul MEXO sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Paramètres généraux

Cet onglet permet essentiellement la définition du nombre de valeurs de temps considérées dans l'analyse mécanique. Ce nombre de valeurs de temps doit être ici égal à celui fourni dans le modèle TEXO ayant servi à faire l'analyse thermique correspondante.

Entrer les paramètres généraux

- 1. Donner le nombre de valeurs de temps (Npas + 1) considérées dans le modèle TEXO associé.
- 2. Choisir la méthode de résolution des systèmes linéaires (méthode directe ou méthode « multifrontale »)
- 3. Définir le nom du fichier de résultats TEXO contenant les champs de température et de degré d'hydratation.

Onglet 2 : Pilotage des conditions aux limites sur les inconnues principales

Cet onglet permet de définir l'évolution en fonction du temps des conditions imposées sur les "inconnues principales". Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions imposées sur les inconnues principales dans un « ensemble de conditions aux limites » seront ainsi à l'instant t_i telles que :

$$\{U(t_i)\} = \{\overline{U}\} f(t_i)$$

avec :

- \overline{U} : Vecteur des inconnues principales imposées dans l'ensemble de conditions aux limites considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si les inconnues principales imposées ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions aux limites sur les inconnues principales, il convient de définir plusieurs ensembles de conditions aux limites (Voir chapitre : « Initialisation des conditions aux limites »). Il est alors possible de définir une fonction du temps différente pour chacun de ces ensembles.

Entrer les coefficients de pilotage des conditions limites

- 1. Choisir le cas pour lequel on souhaite définir la fonction du temps parmi les ensembles de conditions aux limites définis dans le modèle.
- Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées (Colonne 2. notée « Coefficients »).
- Pour chaque valeur de temps définir le coefficient de « relaxation » considéré. Ce coefficient doit 3. être égal à 1 (Valeur par défaut) si les conditions aux limites sont prises en compte pour le temps considéré et égal à 0 dans le cas contraire.
- Répéter les étapes 2 à 4 pour tous les ensembles de conditions aux limites définis dans le modèle. 4.
- Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 3 : Pilotage des conditions de chargement

Cet onglet permet de définir l'évolution en fonction du temps des conditions de chargement. Cette évolution est caractérisée par la donnée d'une valeur f(${
m t}_i$) pour chacune des valeurs de temps ${
m t}_i$ considérées.

Les conditions de chargement imposées dans un « cas de charge » seront ainsi à l'instant ti telles que :

$${F(t_i)} = {\overline{F}} f(t_i)$$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les chargements imposés pour le « cas de charge » considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si dans le modèle considéré il n'y a pas de chargements imposés, les données associées à cet onglet ne sont pas utilisées.

Si les chargements imposés ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$

Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions de chargement, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction du temps différente pour chacun de ces cas.

Entrer les coefficients de pilotage des chargements

- 1. Choisir le cas de charge pour lequel on souhaite définir la fonction du temps parmi les cas de charge définis dans le modèle.
- Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées. 2.
- Les Npas + 1 valeurs caractérisant la fonction f peuvent également être lues sur fichier par activation 3. du bouton « Initialisation par lecture sur fichier ».
- Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle. 4.

Onglet 4 : Stockage pour reprise

Cet onglet permet le stockage sur fichier de l'ensemble des éléments (résultats obtenus pour le dernier pas de temps) nécessaires à une éventuelle « reprise ».

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 5 : Stockage pour visualisation des résultats

Cet onglet permet essentiellement de sélectionner les pas de temps pour lesquels on souhaite une sauvegarde des résultats.

Stocker les résultats pour tous les pas de temps

- 1. Cocher la case "Stockage pour tous les temps".
- 2. Choisir le type de stockage « Résultats principaux » (Inconnues primaires : Champ de température et degré d'hydratation) ou « Résultats principaux et complémentaires » (gradients et flux en sus).

Stocker les résultats pour certains pas de temps

- 1. Vérifier que la case "Stockage pour tous les temps" n'est pas cochée.
- 2. Sélectionner dans la liste proposée les temps pour lesquels on souhaite un stockage à l'aide du bouton gauche de la souris.
- 3. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires »
- Les temps sélectionnés peuvent être « désélectionnés » à l'aide du bouton droit de la souris.

Onglet 6 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul :

- Caractéristiques des pas de temps,
- Caractéristiques des fonctions de « pilotage » (fonctions du temps pour les conditions aux limites en charge).
- Résultats principaux
- Résultats complémentaires.

Définir le contenu du listing

1. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module CSNL

Le module CSNL permet de résoudre les problèmes de consolidation dans les sols saturés ou quasisaturés (degré de saturation supérieure à 80 %).

Les données nécessaires au module de calcul CSNL sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Pas de temps

Cet onglet permet la définition de la discrétisation temporelle considérée.

Npas + 1 Valeurs de temps

Npas Pas de temps

Trois méthodes peuvent être utilisées pour définir les valeurs de temps considérées.

Pas de temps constant

L'utilisateur définit ici la valeur initiale t_0 du temps et une valeur de pas de temps Δt . Les valeurs de temps prises en compte sont alors :

 $t_1 = t_0 + \Delta T,$ $t_2 = t_1 + \Delta T, \dots$

- Temps définis par valeur absolue

L'utilisateur définit ici directement les Npas+1 valeurs du temps qui seront considérés.

- Pas de temps définis par « groupes »

L'utilisateur définit ici la valeur initiale t_0 du temps et un ensemble de couples de valeurs ni, Δti .

On suppose ici que le pas de temps Δ ti est constant pour ni pas de temps. Les valeurs de temps prises en compte seront ainsi :

```
\begin{split} t_1 &= t_0 + \Delta T 1 \\ t_2 &= t_1 + \Delta T 1 \\ ... \\ t_{n1} &= t_{n1-1} + \Delta T 1 \\ t_{n1+1} &= t_{n1} + \Delta T 2 \\ ... \end{split}
```

Définir la discrétisation en temps par pas constants

- 1. Activer l'onglet « Pas de temps ».
- 2. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 3. Définir valeur initiale t₀ du temps.
- 4. Choisir l'option « Pas de temps constant ».
- 5. Donner la valeur considérée du pas de temps.

Définir la discrétisation par la donnée des temps en valeurs absolues

- 1. Activer l'onglet « Pas de temps ».
- 2. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 3. Définir valeur initiale t₀ du temps.
- 4. Choisir l'option « Temps donnés par valeur absolue ».
- 5. Définir les Npas valeurs du temps complétant la valeur initiale dans le tableau réservé à cet effet.

Définir la discrétisation par « groupage » des pas de temps

- 1. Activer l'onglet « Pas de temps ».
- 2. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 3. Définir valeur initiale t₀ du temps.
- 4. Choisir l'option « Pas de temps donnés par groupe ».
- 5. « Ajouter » autant de fois qu'il y a de groupes de pas de temps considérés.
- 6. Définir les couples ni, Δ ti dans le tableau réservé à cet effet.

Il est important de noter ici que la somme des valeurs ni doit être égale à Npas.

Onglet 2 : Processus itératif

Cet onglet permet la définition des paramètres de la méthode itérative utilisée pour le calcul.

Entrer les paramètres du processus itératif

- 1. Activer l'onglet « Processus itératif ».
- 2. Définir le nombre maximal d'itérations autorisées par pas de temps.
- 3. Définir la tolérance relative sur les valeurs de températures nodales obtenues.
- 4. On choisira classiquement : $10^{-3} \le tolérance \le 10^{-2}$

Onglet 3 : Méthode de résolution

Choisir la méthode de résolution des systèmes non linéaires ("Pardiso" ou méthode directe)

Onglet 4 : Pilotage des conditions aux limites sur les inconnues principales

Cet onglet permet de définir l'évolution en fonction du temps des conditions imposées sur les "inconnues principales". Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions imposées sur les inconnues principales dans un « ensemble de conditions aux limites » seront ainsi à l'instant t_i telles que :

$$\{U(t_i)\} = \{\overline{U}\} f(t_i)$$

avec :

- \overline{U} : Vecteur des inconnues principales imposées dans l'ensemble de conditions aux limites considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.

Si les inconnues principales imposées ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$

Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions aux limites sur les inconnues principales, il convient de définir plusieurs ensembles de conditions aux limites (Voir chapitre : « Initialisation des conditions aux limites »). Il est alors possible de définir une fonction du temps différente pour chacun de ces ensembles.

Entrer les coefficients de pilotage des conditions limites

- 1. Activer l'onglet « Pilotage des conditions aux limites ».
- 2. Choisir le cas pour lequel on souhaite définir la fonction du temps parmi les ensembles de conditions aux limites définis dans le modèle.
- Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées (Colonne 3. notée « Coefficients »).
- 4. Pour chaque valeur de temps définir le coefficient de « relaxation » considéré. Ce coefficient doit être égal à 1 (Valeur par défaut) si les conditions aux limites sont prises en compte pour le temps considéré et égal à 0 dans le cas contraire.
- Répéter les étapes 2 à 4 pour tous les ensembles de conditions aux limites définis dans le modèle. 5.

Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 5 : Pilotage des conditions de chargement

Cet onglet permet de définir l'évolution en fonction du temps des conditions de chargement. Cette évolution est caractérisée par la donnée d'une valeur f(${
m t}_i$) pour chacune des valeurs de temps ${
m t}_i$ considérées.

Les conditions de chargement imposées dans un « cas de charge » seront ainsi à l'instant t_i telles que : 2

$$\{F(t_i)\} = \{F\} f(t_i)$$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les chargements imposés pour le « cas de charge » considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si dans le modèle considéré il n'y a pas de chargements imposés, les données associées à cet onglet ne sont pas utilisées.
- Si les chargements imposés ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$

Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions de chargement, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction du temps différente pour chacun de ces cas.

Entrer les coefficients de pilotage des chargements

- 1. Activer l'onglet « Pilotage des chargements ».
- 2. Choisir le cas de charge pour lequel on souhaite définir la fonction du temps parmi les cas de charge définis dans le modèle.

- 3. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées.
- 4. Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle.
- Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 6 : Stockage des déplacements pour reprise

Cet onglet permet de stocker sur fichier les résultats de calcul en déplacement du dernier pas de temps en vue d'une reprise.

Définir un stockage pour reprise

- 1. Activer l'onglet "Stockage des déplacements pour reprise".
- 2. Cocher la case "Stockage pour reprise".
- 3. Entrer le nom du fichier de stockage.

Onglet 7 : Stockage des charges hydrauliques pour reprise

Cet onglet permet de stocker sur fichier les résultats de calcul de type charge hydraulique du dernier pas de temps en vue d'une reprise.

Définir un stockage pour reprise

- 1. Activer l'onglet "Stockage des charges hydrauliques pour reprise".
- 2. Cocher la case "Stockage pour reprise".
- 3. Entrer le nom du fichier de stockage.

Onglet 8 : Stockage pour reprise

Cet onglet permet le stockage sur fichier de l'ensemble des éléments (résultats obtenus pour le dernier incrément) nécessaires à une éventuelle « reprise ».

Définir un stockage pour reprise

- 1. Activer l'onglet "Stockage pour reprise".
- 2. Cocher la case "Stockage pour reprise".
- 3. Entrer le nom du fichier de stockage.

Onglet 9 : Stockage pour visualisation des résultats

Cet onglet permet essentiellement de sélectionner les pas de temps pour lesquels on souhaite une sauvegarde des résultats pour une éventuelle exploitation graphique.

Stocker les résultats pour tous les pas de temps

- 1. Activer l'onglet "Stockage pour visualisation des résultats".
- 2. Cocher la case "Stockage pour tous les temps".
- 3. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Stocker les résultats pour certains pas de temps

- 1. Activer l'onglet "Stockage pour visualisation des résultats".
- 2. Vérifier que la case "Stockage pour tous les temps" n'est pas cochée.
- 3. Sélectionner dans la liste proposée les temps pour lesquels on souhaite un stockage à l'aide du bouton gauche de la souris.
- 4. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Les temps sélectionnés peuvent être « désélectionnés » à l'aide du bouton droit de la souris.

Onglet 10 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Caractéristiques des pas de temps,
- Caractéristiques des fonctions de « pilotage » (fonctions du temps pour les conditions aux limites en charge).
- Résultats principaux
- Résultats complémentaires.

Définir le contenu du listing

- 1. Activer l'onglet "Contenu du listing".
- 2. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

Module MPNL

Le module MPNL permet de résoudre les problèmes d'évolution thermo-mécaniques non linéaires dans les milieux poreux saturés.

Les lois de comportement associées au module MPNL sont les suivantes :

- thermo-poro-anélasticité, thermo-poro-élasticité linéaire isotrope ou orthotrope de révolution,
- loi de conduction du fluide (Darcy) anisotrope,
- loi de conduction de la chaleur (Fourier) anisotrope.

Les données nécessaires à ces modules de calcul sont définies par l'intermédiaire d'une boîte de dialogue contenant les onglets ci-dessous.

Onglet 1 : Pas de temps

Cet onglet permet la définition de la discrétisation temporelle considérée.

Npas + 1 Valeurs de temps

Npas Pas de temps

Trois méthodes peuvent être utilisées pour définir les valeurs de temps considérées.

- Pas de temps constant

L'utilisateur définit ici la valeur initiale t_0 du temps et une valeur de pas de temps Δt . Les valeurs de temps prises en compte sont alors :

 $\mathbf{t}_1 = \mathbf{t}_0 + \Delta \mathbf{T},$

 $t_2 = t_1 + \Delta T, ...$

- Temps définis par valeur absolue

L'utilisateur définit ici directement les Npas+1 valeurs du temps qui seront considérés.

- Pas de temps définis par « groupes »

L'utilisateur définit ici la valeur initiale t_0 du temps et un ensemble de couples de valeurs ni, Δti . On suppose ici que le pas de temps Δti est constant pour ni pas de temps. Les valeurs de temps prises en compte seront ainsi :

```
\begin{split} t_1 &= t_0 + \Delta T 1 \\ t_2 &= t_1 + \Delta T 1 \\ ... \\ t_{n1} &= t_{n1-1} + \Delta T 1 \\ t_{n1+1} &= t_{n1} + \Delta T 2 \\ ... \end{split}
```


Définir la discrétisation en temps par pas constants

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t_0 du temps.
- 3. Choisir l'option « Pas de temps constant ».
- 4. Donner la valeur considérée du pas de temps.

Définir la discrétisation par la donnée des temps en valeurs absolues

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t₀ du temps.
- 3. Choisir l'option « Temps donnés par valeur absolue ».
- 4. Définir les Npas valeurs du temps complétant la valeur initiale dans le tableau réservé à cet effet.

Définir la discrétisation par « groupage » des pas de temps

- 1. Définir le nombre de valeurs de temps Npas + 1 considérées.
- 2. Définir valeur initiale t_0 du temps.
- 3. Choisir l'option « Pas de temps donnés par groupe ».
- 4. « Ajouter » autant de fois qu'il y a de groupes de pas de temps considérés.
- 5. Définir les couples ni, Δ ti dans le tableau réservé à cet effet.

ll est important de noter ici que la somme des valeurs ni doit être égale à Npas.

Onglet 2 : Méthode de résolution

Cet onglet permet le choix et la définition des paramètres de la méthode itérative utilisée pour le calcul.

Entrer les paramètres du processus itératif

- 1. Choisir la méthode de résolution utilisée (Schéma semi implicite ou schéma implicite).
- 2. Définir le nombre maximal d'itérations autorisées par pas de temps.
- 3. Définir la tolérance relative sur les valeurs des inconnues principales obtenues.
- 4. On choisira classiquement : $10^{-3} \le tolérance \le 10^{-2}$
- 5. Indiquer si l'on souhaite le stockage (pour visualisations graphiques) des résultats « déformations totales » et « déformations plastiques ».

Onglet 3 : Pilotage des conditions aux limites sur les inconnues principales

Cet onglet permet de définir l'évolution en fonction du temps des conditions imposées sur les "inconnues principales". Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions imposées sur les inconnues principales dans un « ensemble de conditions aux limites » seront ainsi à l'instant t_i telles que :

$$\{U(t_i)\} = \{\overline{U}\} f(t_i)$$

avec :

- \overline{U} : Vecteur des inconnues principales imposées dans l'ensemble de conditions aux limites considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.

- Si les inconnues principales imposées ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir : $f(t_i) = 1 \quad \forall t_i$
- Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions aux limites sur les inconnues principales, il convient de définir plusieurs ensembles de conditions aux limites (Voir chapitre : « Initialisation des conditions aux limites »). Il est alors possible de définir une fonction du temps différente pour chacun de ces ensembles.

Entrer les coefficients de pilotage des conditions limites

- 1. Choisir le cas pour lequel on souhaite définir la fonction du temps parmi les ensembles de conditions aux limites définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées (Colonne notée « Coefficients »).
- 3. Pour chaque valeur de temps définir le coefficient de « relaxation » considéré. Ce coefficient doit être égal à 1 (Valeur par défaut) si les conditions aux limites sont prises en compte pour le temps considéré et égal à 0 dans le cas contraire.
- 4. Répéter les étapes 2 à 4 pour tous les ensembles de conditions aux limites définis dans le modèle.
- Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 4 : Pilotage des conditions de chargement

Cet onglet permet de définir l'évolution en fonction du temps des conditions de chargement. Cette évolution est caractérisée par la donnée d'une valeur f(t_i) pour chacune des valeurs de temps t_i considérées.

Les conditions de chargement imposées dans un « cas de charge » seront ainsi à l'instant t_i telles que :

$${F(t_i)} = {\overline{F}} f(t_i)$$

avec :

- $\{\overline{F}\}$: Vecteur caractérisant les chargements imposés pour le « cas de charge » considéré.
- $f(t_i)$: Valeur de la fonction au temps t_i.
- Si dans le modèle considéré il n'y a pas de chargements imposés, les données associées à cet onglet ne sont pas utilisées.
- Si les chargements imposés ne varient pas en fonction du temps, il suffit de conserver les valeurs proposées par défaut, à savoir :

 $f(t_i) = 1 \ \forall t_i$

Dans le cas particulier ou l'on est obligé de prendre en compte plusieurs évolutions temporelles des conditions de chargement, il convient de définir plusieurs « Cas de charges » (Voir chapitre : « Initialisation Cas de charge »). Il est alors possible de définir une fonction du temps différente pour chacun de ces cas.

Entrer les coefficients de pilotage des chargements

- 1. Choisir le cas de charge pour lequel on souhaite définir la fonction du temps parmi les cas de charge définis dans le modèle.
- 2. Définir les valeurs de la fonction $f(t_i)$ pour chacune des valeurs de temps t_i considérées.
- 3. Répéter les étapes 2 et 3 pour tous les cas de charge définis dans le modèle.

Onglet 5 : Stockage des déplacements pour reprise

Cet onglet permet de stocker sur fichier les résultats de calcul en déplacement du dernier pas de temps en vue d'une reprise.

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 6 : Stockage des pressions pour reprise

Cet onglet permet de stocker sur fichier les résultats de calcul de type "pression" du dernier pas de temps en vue d'une reprise.

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 7 : Stockage des températures pour reprise

Cet onglet permet de stocker sur fichier les résultats de calcul de type "températures" du dernier pas de temps en vue d'une reprise.

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Onglet 8 : Stockage pour reprise

Cet onglet permet le stockage sur fichier de l'ensemble des éléments (résultats obtenus pour le dernier incrément) nécessaires à une éventuelle « reprise ».

Définir un stockage pour reprise

- 1. Cocher la case "Stockage pour reprise".
- 2. Entrer le nom du fichier de stockage.

Les Npas + 1 valeurs caractérisant la fonction *f* peuvent également être lues sur fichier par activation du bouton « Initialisation par lecture sur fichier ».

Onglet 9 : Stockage pour visualisation des résultats

Cet onglet permet essentiellement de sélectionner les pas de temps pour lesquels on souhaite une sauvegarde des résultats pour une éventuelle exploitation graphique.

Stocker les résultats pour tous les pas de temps

- 1. Cocher la case "Stockage pour tous les temps".
- 2. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Stocker les résultats pour certains pas de temps

- 1. Vérifier que la case "Stockage pour tous les temps" n'est pas cochée.
- 2. Sélectionner dans la liste proposée les temps pour lesquels on souhaite un stockage à l'aide du bouton gauche de la souris.
- 3. Choisir le type de stockage « Résultats principaux » ou « Résultats principaux et complémentaires ».

Les temps sélectionnés peuvent être « désélectionnés » à l'aide du bouton droit de la souris.

Onglet 10 : Contenu du listing

Cet onglet permet de définir les éléments constitutifs de la note de calcul. Il est ainsi possible d'obtenir tout ou partie des éléments suivants :

- Caractéristiques des pas de temps,

- Caractéristiques des fonctions de « pilotage » (fonctions du temps pour les conditions aux limites en charge).

- Résultats principaux
- Résultats complémentaires.

Définir le contenu du listing

1. Cocher les cases correspondant aux entités que l'on souhaite obtenir dans le listing.

14. Gestion des calculs

Introduction

L'activation de l'onglet « Gestion des calculs » permet essentiellement la réalisation des calculs pour les modèles définis. La barre d'outils associée à cet onglet se présente comme suit :

On propose aussi 2 options permettant d'optimiser certains temps de préparation du modèle.

La renumérotation n'est nécessaire que dans le cas où le solveur Pardiso ou Multifrontal n'est pas choisi (voir chapitre précédent). Si on la choisit, les temps de génération des jeux de données sont allongés.

La vérification du modèle permet de s'assurer que tous les éléments du modèle sont correctement connectés et qu'aucun d'entre eux n'est isolé. Ce cas entrainerait une erreur du calcul (de type « Pivot négatif ou nul »). Cette vérification peut être longue, aussi cette option n'est pas activée par défaut.

С	Options de calcul	ф.	×
A	Appliquer		
Δ	Renumérotation		
	 Aucune (recommandé si uti isati Renumérotation complète 	on du solveur multifrontal)
⊿	Vérifier		
	Vérifier le modèle		

On décrit par la suite les outils de la barre.

Options générales d'analyse

Cet outil permet de régler les paramètres ci-dessous :

Type de « renumérotation » : Avec ou sans renumérotation. Le processus de renumérotation est utilisé essentiellement pour minimiser la largeur de bande des matrices considérées. L'activation de l'option « Avec renumérotation » est donc recommandée pour tous les « solveurs » utilisant une méthode de résolution directe (AXIF, LIGC, TACT, DTLI, SSTR, SURF, NAPP, LINC, LINH, SUMO, CSLI, MPLI, MPNL). Dans les cas où l'analyse est effectuée avec le solveur "Pardiso" ou "Multifrontal", la renumérotation n'est pas utile. Il est ainsi recommandé d'utiliser l'option « Sans numérotation » pour éviter la réalisation d'une opération souvent couteuse en temps calcul. Il convient ici de faire attention au cas particulier ou un modèle utilise les résultats d'un autre modèle. Citons à titre d'exemple la définition dans un « modèle statique » de chargements thermiques par lecture sur fichier des températures résultats du calcul d'un « modèle thermique ». Pour que cette opération soit valide, il convient que les deux modèles soient

« compatibles ». Pour ce faire, il faudra ici veiller à utiliser la même option « Type de renumérotation » pour les deux modèles.

 Vérification du modèle : Si cette option est cochée (valeur par défaut), le logiciel vérifiera la consistance du modèle avant lancement des calculs.

Eéalisation des calculs

Cet outil permet la réalisation effective des calculs pour les modèles considérés. Elle permet également de visualiser l'état des modèles : complets ou non, calculés ou non.

Lorsque le modèle est calculé, un état sur le calcul est affiché :

- OK, calcul convergés
- Autre message : erreur de convergence, de mise en données...

Ainsi dans l'exemple ci-dessous, on constate :

- que le modèle «Model1 » est calculé,
- que le modèle « Model2 » est prêt pour le calcul mais qu'il n'a pas été calculé,
- que le modèle « Model3 » n'est pas prêt pour le calcul car les propriétés des éléments sont incomplètes.

👂 Ges	stion de	s calculs						×
Choix	du mod	èle 🔽 🗌 🗹						
	ld	Nom du modèle	Solveur	PROP	COND	CHAR	DATA	RES
	1	Model1	MCNL	4	4	4	OK	ОК
	2	Model2	MCNL	4	4	4	-	-
	3	Model3	DYNI		4	4	-	-
		Actions :	Création des	fichiers de dor	nées et lancem	nent		~
							Valider	Annuler

Cette boîte de dialogue présente l'ensemble des modèles créés par l'utilisateur. Pour réaliser les analyses des modèles considérés, il convient de suivre la procédure suivante.

Réaliser des calculs

1. Cocher (colonne de gauche) les modèles pour lesquels on souhaite réaliser l'analyse.

Seuls les modèles complets pour lesquels « Propriétés », « Conditions aux limites » et « Chargements » sont validés, peuvent être calculés.

- 2. Dans la liste déroulante « Actions » choisir l'option « Création fichiers de données et réalisation des calculs ». Le choix « Création fichiers de données » entraîne la seule création du fichier de données « entrée » du solveur de CESAR. Ce fichier texte peut être visualisé et édité par l'utilisateur (Voir outil « Visualisation fichier de données »). Dans le cas particulier où ce fichier a été modifié par l'utilisateur, il conviendra de choisi dans la liste déroulante « Actions » l'option « Résoudre avec fichier de données existant » pour que les modifications utilisateur soient prises en compte.
- 3. « Valider ».

Arrêt des calculs

Cet outil permet à l'utilisateur d'interrompre le calcul à tout moment.

L'utilisateur doit savoir que l'utilisation de cet outil entraine la perte des informations non enregistrées.

Visualisation du fichier de données

Cet outil permet la visualisation et l'éventuelle édition du fichier de données correspondant au modèle courant défini dans la liste déroulante « Modèles ».

Dat

Visualisation du « listing »

Cet outil permet la visualisation et l'éventuelle édition du listing de résultats généré par le solveur et correspondant au modèle courant défini dans la liste déroulante « Modèles ».

빌냁

💐 Enregistrer, Enregistrer sous...

Ces deux outils permettent d'enregistrer le fichier visualisé dans la fenêtre de travail (fichier de données ou listing de résultats).

Rechercher...

Cet outil permet la recherche d'une chaîne de caractères dans le fichier visualisé dans la fenêtre de travail (fichier de données ou listing de résultats).

Fonctionnalité en mode beta.

Options d'affichage du modèle

Fonctionnalité en mode beta.

15. Visualisation des résultats

Introduction

Ce module permet la visualisation graphique des principaux résultats obtenus pour le "modèle courant" considéré. Peuvent être ainsi représentés les résultats appartenant aux types suivants :

- Déformée du modèle (cas des problèmes mécaniques),
- Vecteurs,
- Tenseurs,
- Isovaleurs,
- Efforts dans les éléments de type poutre et barre.

Sur une même vue, ces résultats peuvent être superposés. On peut ainsi visualiser, par exemple les isovaleurs associées à un critère donné, les contraintes principales, sur la structure représentée en position déformée.

L'option "Choix des visualisations" permet la sélection des types de résultats à visualiser. Pour chaque type de résultats, il est possible de régler un certain nombre de paramètres tels que :

- Choix de l'entité à visualiser (type du vecteur, tenseur, scalaire pour isovaleur...),
- Echelles,
- Palettes de couleurs...

Un outil spécialisé est dédié pour définir les paramètres associés à chaque type de résultat. Ces réglages seront ainsi définis par l'intermédiaire des outils :

- Options déformées du modèle (cas des problèmes mécaniques),
- Options vecteurs,
- Options tenseurs,
- Options isovaleurs,
- Options efforts dans les éléments de type poutre et barre.

Les outils permettant la visualisation des résultats

La visualisation des résultats associés au modèle courant est réalisée à l'aide des outils ci-dessous.

- 🗾 Choix du type des résultats à afficher
- Enveloppe de résultats isovaleurs
- Y Choix de "l'entité" (incrément, pas de temps...) à visualiser
- Moptions Maillage
- Y Options Déformée
- Dptions Isovaleurs
 - Options Vecteurs

- Options Résultats poutres et barres
- 🛛 🤎 Options d'affichage de l'état du contact
- - Options d'affichage de la légende
- (i) Informations
- Résultats affichés par groupe

۲

Choix du type des résultats à afficher

L'activation de cet outil entraîne l'affichage d'une boîte de dialogue permettant de sélectionner les entités à visualiser. Cette boîte de dialogue contient six « paragraphes ».

	ype de résultats		×
A	ppliquer		
Δ	Déformation		
	Maillage	Non déformé	-
Δ	Isovaleurs		
	Actif		
	Paramètre	Déplacement total	
Δ	Vecteurs		
	Actif		
	Paramètre	Vecteur déplacement 2D	-
Δ	Tenseurs		
	Actif		
	Paramètre	Tenseur de contraintes 2D	-
Δ	Résultats poutres		
	Actif		
Δ	Etat du contact		
	Actif		

Le premier paragraphe permet à l'utilisateur de choisir le mode de visualisation du maillage. Les deux choix exclusifs suivants sont proposés.

- Afficher le maillage en position origine
- Afficher le maillage en position déformée

Les cinq paragraphes suivants permettent de définir les types de résultats qui seront affichés à l'écran. Cinq types sont ici proposés.

- Isovaleurs de valeurs scalaires
- Vecteurs
- Tenseurs
- Résultats poutres et barres
- Etat des « contacts » (si modèle avec éléments de contact)

Notons ici que ces résultats peuvent être superposés. A titre d'exemple, il est ainsi possible de visualiser les isovaleurs associées à un critère donné avec superposition des contraintes principales.

Isovaleurs + *Contraintes principales*

Isovaleurs + Contraintes principales sur maillage en position déformée

Une palette de couleurs peut être associée à chaque type de résultat. Les correspondances « couleurs – valeurs » peuvent être affichées à l'écran dans une légende spécifique.

Définir le type des résultats à afficher

- 1. Activer l'outil « Choix du type des résultats à afficher ».
- 2. Choisir le mode de visualisation du maillage.
- 3. Cocher les types de résultats que l'on souhaite visualiser de manière concomitante.
- 4. « Appliquer » pour prendre en compte les choix réalisés.

Enveloppe de résultats isovaleurs

L'activation de cet outil entraîne l'affichage d'une boîte de dialogue permettant de visualiser les résultats « enveloppe » des isovaleurs du scalaire choisi sur l'ensemble des « incréments » ou « pas de temps » du modèle considéré.

Afficher l'enveloppe des isovaleurs

- 1. Activer l'outil « Enveloppe de résultats isovaleurs ».
- 2. Cocher la case « Enveloppe d'isovaleurs ».
- 3. Choisir l'une des deux options « Enveloppe des valeurs min » ou « Enveloppe des valeurs max ».
- 4. « Appliquer » pour prendre en compte les choix réalisés.

Choix de l'entité et animation des résultats

Cet outil permet de choisir l'entité (incrément, pas de temps...) pour laquelle on souhaite visualiser les résultats et d'avoir une éventuelle « animation » de ces derniers. Le tableau ci-dessous précise la notion générique d'entité pour chacun des modules de résolution de CESAR-LCPC pouvant être ici utilisés.

Domaine d'application:	Module	Entities =
Statique	LINE	Cas de charges du modèle
	MCNL	Incréments de charge
	TCNL	Incréments de charge
Dynamique	DYNI	Pas de temps
	MODE	Modes propres
	SUMO	Pas de temps
	FLAM	Modes de flambement
	LINC / LINH	-
Hydrogéologie	DTNL	Pas de temps
	NSAT	Pas de temps
Thermique	DTNL	Pas de temps
Béton au jeune âge	ΤΕΧΟ	Pas de temps
	MEXO	Pas de temps
Consolidation	CSNL	Pas de temps
Problèmes couplés	MPNL	Pas de temps

Animation des résultats

- 1. Choisir le type d'animation souhaité. Dans le cas où le modèle considéré possède plusieurs entités de résultats (Ex : plusieurs incréments), l'utilisateur peut ici choisir entre deux type d'animations :
 - A) Une animation montrant l'évolution des résultats suivant les incréments (ou pas de temps) du modèle
 - B) Une animation montrant l'évolution des résultats pour l'entité courante. En utilisant cette option, nous pourrons ainsi obtenir une animation montrant l'évolution des résultats pour un simple calcul linéaire (évolution entre l'état non déformé et l'état déformé à l'équilibre).
- 2. Si le choix A) est effectué, l'animation est commandée par l'intermédiaire des outils ci-dessous proposés dans la grille boîte de dialogue.

- : Arrêt de l'animation
- 3. Si le choix B) est effectué, l'animation est définie par la donnée des deux paramètres : Nombre de périodes et nombre de dessins par période. Ces deux paramètres définissent la « fluidité » et la « durée » de l'animation. Les deux boutons ci-dessus sont utilisés ici encore pour activer et stopper l'animation.
- 4. « Appliquer » pour prendre en compte les choix réalisés.

Choix de l'entité à visualiser

- 1. Choisir le type d'animation A) (Animation par passage d'une « entité » à la suivante).
- 2. Utilisation de la barre d'outils proposée dans la boîte de dialogue.

Avec :

- I Retour à la première entité
- ▶ : Passage à l'entité suivante
- 🕨 : Choix de la dernière entité

Options maillage

Cette option permet de régler le mode d'affichage du maillage. Il est ici possible d'afficher :

- Les bordures de groupes
- Les bordures d'éléments
- Les « facettes » (éléments coloriés)

Chacune de ces entités peut être affichée en couleur neutre (gris clair) ou dans sa couleur de définition. Le tableau ci-dessous visualise certaine des combinaisons possibles.

Bordure de groupe en couleur neutre

Bordures d'éléments en couleur neutre

Facettes en couleur neutre et bordures d'éléments avec couleur d'éléments

Bordure de groupe avec couleur du groupe

Bordures d'éléments avec couleurs d'éléments

Facettes en couleur d'élément et bordures d'éléments avec couleur neutre

Définir le mode de visualisation du maillage

- 1. Activer l'outil "Options maillage".
- 2. Choisir les entités (bordures de groupe, bordures d'éléments, facettes) à visualiser.
- 3. Choisir les couleurs associées à chacune de ces entités.
- 4. Activer les boutons « Appliquer » ou « Valider » pour prendre en compte les choix réalisés.

Options de la déformée

Cet outil permet de régler les paramètres d'affichage de la déformée du modèle. Il n'a de sens que pour les modules donnant lieu à des résultats en déplacement.

Trois paramètres peuvent ici être définis :

- L'échelle de la déformée,
- La visualisation ou non de la position initiale du modèle représentée par les bordures de groupe,
- Le « modèle de référence » si l'on souhaite visualiser l'incrément de déplacements entre le présent modèle et le modèle de référence.

Deux méthodes peuvent être utilisées pour régler l'échelle de la déformée. Dans la première méthode dite « automatique », l'amplitude du déplacement maximum est représentée par une longueur standard égale à un pourcentage de la taille du modèle. Ainsi avec cette méthode, la représentation de l'amplitude maximale de la déformée est indépendante de la valeur de cette dernière. L'utilisateur peut ici régler le pourcentage de la taille du modèle utilisé pour représenter la déformée.

Dans la deuxième méthode dite « manuelle », l'utilisateur définit la correspondance existant entre une valeur donnée de déplacement et sa représentation graphique. A titre d'exemple nous pourrons dire qu'un déplacement de 10mm sera représenté par une longueur de 1m. Cette méthode peut être utilisée pour comparer de manière graphique les résultats de plusieurs calculs.

Lorsque l'analyse est une série de phases de construction, on peut choisir dans une dernière option de représenter la déformée incrémentale du modèle en comparant l'état courant à un état déformé d'une phase précédemment calculée.

Cette option est aussi utile pour permettre de représenter la valeur incrémentale du déplacement représenté sous forme d'isovaleur ou de vecteur.

Régler les paramètres pour la visualisation de la déformée

- 1. Activer l'outil "Options déformées".
- 2. Choisir le mode de définition de l'échelle (automatique ou manuel).
- 3. Définir les paramètres associés au mode de définition de l'échelle considéré.
- 4. Cocher l'option "Bordures de groupes" dans le cas où l'on souhaite visualiser également la structure non déformée.
- 5. « Appliquer » pour prendre en compte les choix réalisés.

Régler les paramètres pour la visualisation de la déformée incrémentale

- 1. Activer l'outil "Options déformées".
- 2. Choisir le mode de définition de l'échelle (automatique ou manuel).
- 3. Définir les paramètres associés au mode de définition de l'échelle considéré.
- 4. Cocher l'option "Bordures de groupes" dans le cas où l'on souhaite visualiser également la structure non déformée.
- 5. Cocher la case « Activer déplacement incrémental » et définir le modèle de référence.
- 6. « Appliquer » pour prendre en compte les choix réalisés.

Options des isovaleurs

V

Cet outil permet de régler les paramètres caractérisant l'affichage des isovaleurs. L'activation de cette option entraine l'affichage d'une boîte de dialogue présentant quatre sections.

Options Isovaleurs		
Appliquer		
Options Isovaleurs		
Activer		
Style	Transition	-
Lignes de contours		
Lignes de contours		
Palette	Isovaleurs	•
Echelle		
	Sup - Max Sup - Max 4 - Sup 3 - 4 3 - 4 2 - 3 Inf - Inf - 2 Min - Inf	
Automations	NC = 6	
Automatique Manuel		
Min [mm]	-13.624	
Max [mm]	3.336	
Valeur inf. auto. [mm]	-11.928	
Valeur sup. auto. [mm]	1.640	
Isovaleurs		
Nombre de lignes	10	
Palette de couleurs	Standard	-

Il est tout d'abord possible de choisir le « style » d'affichage des isovaleurs parmi les trois options cidessous :

- Transition : échelle continue de couleurs
- Zones : couleur constante par zone.
- Moyenne : couleur constante par élément

Transition de couleurs

Couleur moyenne par élément + affichage des bordures d'élément

En sus des surfaces d'isovaleurs, il est également possible d'obtenir ici les « lignes d'isovaleurs » montrant clairement la frontière entre chaque zone.

Isovaleurs type « couleur continue »

Isovaleurs avec lignes d'isovaleurs (grises)

Il est également possible de choisir ici la "palette de couleur" considérée pour la représentation des isovaleurs par l'intermédiaire d'une liste déroulante proposant un ensemble de palettes prédéfinies.

En sus du style défini ci-dessus, il est possible de régler les valeurs "Inf" et "Sup" caractérisant les valeurs "extrêmes" du scalaire à représenter ainsi que le nombre d'"intervalles" pris en compte. Nous représentons ci-dessous une échelle de valeurs caractéristique comprenant six intervalles de couleurs.

Représentation continue des couleurs

Représentation par zones

Pour un scalaire donné, le logiciel calcule les valeurs "min" et "max" correspondant aux extrema de la valeur scalaire considérée. Par défaut, l'intervalle "min-max" est décomposé en n (n défini par l'utilisateur) intervalles équidistants. Dans les niveaux de valeurs ainsi définis, nous distinguons les valeurs "Inf" et "Sup" situées respectivement au-dessus de la valeur minimale et au-dessous de la valeur maximale. Quel que soit le style choisi pour la représentation des isovaleurs, les zones "Min-Inf" et "Sup-Max" possèdent des couleurs uniformes.

Les deux valeurs "Inf" et "Sup" peuvent être modifiées par l'utilisateur. Il est ainsi très facile de visualiser à titre d'exemple les zones pour lesquelles le scalaire considéré dépasse la valeur donnée "Sup".

Régler le scalaire à afficher

1. Le scalaire affiché en isovaleurs est associé à celui défini dans « Choix du résultat à afficher ».

Régler les paramètres pour la visualisation des isovaleurs

- 1. Activer l'outil "Options isovaleurs",
- 2. Choisir le style des isovaleurs (par zones, continu, moyenne),
- 3. Cocher l'option « lignes d'isovaleurs » si l'on souhaite la visualisation de ces dernières et une couleur associée (palette d'isovaleurs, gris, noir ou blanc)
- 4. Donner les valeurs "Inf" et "Sup" caractérisant l'échelle de représentation des couleurs (si choix manuel),
- 5. Définir le nombre d'intervalles (de couleurs) à prendre en compte.
- 6. Choisir la palette de couleur considérée.
- 7. « Appliquer » pour prendre en compte les choix réalisés.

Options vecteurs

☑

Cet outil permet le réglage des paramètres caractérisant l'affichage des résultats de type vecteur.

Vecteur des déplacements dans un massif de sol sous une fondation superficielle

La grille boîte de dialogue proposée permet tout d'abord le réglage éventuel de l'échelle utilisée pour la représentation de l'amplitude des vecteurs.

Deux méthodes peuvent être utilisées pour régler cette échelle. Dans la première méthode dite « automatique », l'amplitude maximale du vecteur est représentée par une longueur standard égale à un pourcentage de la taille du modèle. Ainsi avec cette méthode, la représentation de l'amplitude maximale des vecteurs est indépendante de la valeur de cette dernière. L'utilisateur peut ici régler le pourcentage de la taille du modèle utilisé pour représenter ces vecteurs.

Dans la deuxième méthode dite « manuelle », l'utilisateur définit la correspondance existante entre une amplitude donnée du vecteur et sa représentation graphique. Cette méthode peut être utilisée pour comparer de manière graphique les résultats de plusieurs calculs.

Il est ensuite possible de définir le réglage des couleurs utilisées pour la représentation des vecteurs. Tout comme pour les isovaleurs (Voir : Options isovaleurs), il est ici possible de définir les paramètres suivants :

- Valeurs "Inf" et "Sup" caractérisant l'échelle de représentation des couleurs.
- Nombre de niveaux de couleurs.
- Type de la palette de couleurs.

Régler les paramètres pour la visualisation des vecteurs

- 1. Activer l'outil "Options vecteurs".
- 2. Choisir le mode de définition de l'échelle (automatique ou manuel).
- 3. Définir les paramètres associés au mode de définition de l'échelle considéré.
- 4. Si "Automatique", indiquer le "Facteur d'échelle". La valeur à indiquer est le ratio entre la longueur d'affichage et la dimension maximale du modèle.
- 5. Si "Manuel", indiquer la longueur d'affichage pour une valeur donnée du scalaire.
- 6. Donner les valeurs "Inf" et "Sup" caractérisant l'échelle de représentation des couleurs.
- 7. Définir le nombre d'intervalles (de couleurs) à prendre en compte.
- 8. Choisir la palette de couleur considérée.
- 9. « Appliquer » pour prendre en compte les choix réalisés.

Options tenseurs

Cet outil permet le réglage des paramètres caractérisant l'affichage des résultats de type tenseur.

La boîte de dialogue proposée permet tout d'abord le réglage éventuel de l'échelle utilisée pour la représentation de l'amplitude des composantes des tenseurs.

Deux méthodes peuvent être utilisées pour régler cette échelle. Dans la première méthode dite « automatique », l'amplitude maximale des composantes du tenseur est représentée par une longueur standard égale à un pourcentage de la taille du modèle. Ainsi avec cette méthode, la représentation de l'amplitude maximale est indépendante de la valeur de cette dernière. L'utilisateur peut ici régler le pourcentage de la taille du modèle utilisé pour représenter ces vecteurs.

Dans la deuxième méthode dite « manuelle », l'utilisateur définit la correspondance existante entre une amplitude donnée de composante de tenseur et sa représentation graphique. Cette méthode peut être utilisée pour comparer de manière graphique les résultats de plusieurs calculs.

Pour les tenseurs, les composantes négatives (compression) seront représentées en bleu tandis que les composantes positives (traction) seront représentées en rouge. Cette solution permet la distinction simple des zones comprimées et des zones tendues.

С	ptions Tenseurs		Ą	×
A	ppliquer			
⊿	Echelle			
	Echelle	Automatique		-
⊿	Echelle automatique			
	Facteur d'échelle []	1.000e-001		
⊿	Coordonnées du tens	eur de contraintes		
	Système de coordonn			

Il est également possible de choisir si l'on veut visualiser les « composantes principales » du tenseur considéré (option par défaut) ou les composantes (xx, yy et zz) du tenseur dans un repère local utilisateur défini par la donnée de deux vecteurs Vx et Vy.

Régler les paramètres pour la visualisation des tenseurs

- 1. Activer l'outil "Options tenseurs".
- 2. Choisir le mode de définition de l'échelle (automatique ou manuel).
- 3. Définir les paramètres associés au mode de définition de l'échelle considéré.

- 4. Si "Automatique", indiquer le "Facteur d'échelle". La valeur à indiquer est le ratio entre la longueur d'affichage et la dimension maximale du modèle.
- 5. Si "Manuel", indiquer la longueur d'affichage pour une valeur donnée du scalaire.
- 6. Choisir le repère de représentation du tenseur (repère principal ou repère local). Si le choix « repère local » est effectué, définir l'angle existant entre l'axe X du repère global et l'axe x du repère local.
- 7. Définir le nombre d'intervalles (de couleurs) à prendre en compte.
- 8. Choisir la palette de couleur considérée.
- 9. « Appliquer » pour prendre en compte les choix réalisés.

Options résultats poutres

Dans cette option, l'utilisateur accède au réglage des paramètres de visualisation des résultats (N, V, M) dans les éléments de structure de type poutres.

Notons ici que la représentation de ces efforts ne sera effectuée que sur la structure en position non déformée.

La boîte de dialogue proposée permet tout d'abord le réglage éventuel de l'échelle utilisée pour la représentation des efforts.

Deux méthodes peuvent être utilisées pour régler cette échelle. Dans la première méthode dite « automatique », l'amplitude maximale de l'effort considéré est représentée par une longueur standard égale à un pourcentage de la taille du modèle. Ainsi avec cette méthode, la représentation de l'amplitude maximale est indépendante de la valeur de cette dernière. L'utilisateur peut ici régler le pourcentage de la taille du modèle utilisé pour représenter ces vecteurs.

Dans la deuxième méthode dite « manuelle », l'utilisateur définit la correspondance existant entre une amplitude donnée de l'effort et sa représentation graphique. Cette méthode peut être utilisée pour comparer de manière graphique les résultats de plusieurs calculs.

Régler les paramètres pour la visualisation des résultats poutres

- 1. Activer l'outil "Options résultats poutres".
- 2. Choisir le mode de définition de l'échelle (automatique ou manuel).
- 3. Définir les paramètres associés au mode de définition de l'échelle considéré :
 - Si "Automatique", indiquer le "Facteur d'échelle". La valeur à indiquer est le ratio entre la longueur d'affichage et la dimension maximale du modèle.
 - Si "Manuel", indiquer la longueur d'affichage pour une valeur donnée du scalaire.
- 4. Indiquer si les valeurs minimales et maximales du résultat sélectionné doivent être affichées.
- 5. « Appliquer » pour prendre en compte les choix réalisés.

	-
×	
	- A.
10	

Options état du contact

Cet outil permet l'affichage et le paramétrage de l'état des éléments de contact (adhérent, glissant ou décollé).

Afficher l'état du contact

- 1. Activer l'outil « Options état du contact ».
- 2. Paramétrer la taille d'affichage de l'état.

Légende

Cet outil permet l'affichage et le paramétrage de la légende associée au(x) type(s) de résultat(s) affiché(s).

Afficher une légende

- 1. Activer l'outil « Légende ».
- 2. Sélectionner le type de légende à afficher.
- 3. Paramétrer l'affichage : police, fond, bordure, largeur et hauteur.

Légende		Ψ×
Appliquer		
Légende		
Légende	Isovaleur	-
Police	non	
Largeur [%]	Isovaleur	
Hauteur [%]	Vecteur	
Bordures de légende	Tenseur	
Avec couleur de fond	Poutre	
Couleur de fond	Etat du contact	

L'affichage d'une légende est associé au choix des visualisations de résultats effectué dans l'outil « Types de résultats ».

Légende associée au tracé des vecteurs déplacement

Légende associée au tracé des isovaleurs

(i) Informations

Cet outil permet de manière générale la récupération d'informations portant sur les résultats associés aux nœuds et éléments de poutre du modèle. Son activation entraîne l'affichage d'une boîte de dialogue dont le contenu est fonction de la nature des résultats visualisés. Quand cette boîte de dialogue est ouverte, il suffit de cliquer sur le nœud ou l'élément de poutre considéré à l'aide du bouton droit de la souris pour récupérer les informations associées.

Ainsi, selon les choix effectués grâce à l'outil « Choix des types de résultats à afficher », cette boîte de dialogue d'information affichera dans le cas d'une sélection de nœud tout ou partie des résultats cidessous :

- Numéro du nœud cliqué.
- Coordonnées du nœud.
- Composantes du vecteur courant (choisi dans « Options vecteurs »).
- Composantes du tenseur courant (choisi dans « Options tenseurs »).
- Valeur du scalaire courant utilisé pour la représentation des isovaleurs (choisi dans « Options isovaleurs »).

Dans le cas d'un élément de poutre, nous obtiendrons les informations :

- Numéro de l'élément cliqué.
- N origine, N extrémité, N milieu.
- Vy origine, Vy extrémité, Vy milieu.
- Mz origine, Mz extrémité, Mz milieu.

Capturer les informations

- 1. Activer l'outil « Informations ».
- 2. Cliquer avec le bouton droit de la souris sur le nœud ou l'élément de poutre du maillage considéré. Les résultats associés au nœud considéré sont affichés dans la boite de dialogue.

Enregistrer les informations dans un fichier texte

- 1. Activer l'outil "Informations ".
- 2. Cliquer avec le bouton droit de la souris sur le nœud du maillage ou l'élément de poutre considéré. Les résultats associés au nœud considéré sont affichés dans la boite de dialogue.
- 3. Cliquer sur le bouton « enregistrer sous ». Une boîte de dialogue vous permet de définir le nom du fichier dans lequel seront stockées les informations considérées. Par défaut, l'extension du fichier créé est « .info ».
- 4. Cliquer avec le bouton droit de la souris sur un autre nœud ou élément de poutre du maillage.
- 5. Cliquer sur le bouton « enregistrer ». Les informations correspondant au nœud ou élément cliqué sont sauvegardées dans le fichier précédemment défini.
- Les informations stockées sont sauvegardées en ligne avec le séparateur « , ». Il est ainsi très facile de « récupérer » ces dernières dans un tableur quelconque afin de les traiter de manière particulière.

	A	В	С	D	Е	F	G	Η	Ι	J	K	L	M	N	
1	Noeud	170	х	0.647	m	у	-0.47	m	z	0	m	u	0.25	mm	
2	Noeud	138	х	0.761	m	у	-0.247	m	z	0	m	u	0.28	mm	
3	Noeud	141	х	0.713	m	у	-0.363	m	z	0	m	u	0.35	mm	
4	Noeud	170	х	0.647	m	у	-0.47	m	z	0	m	u	0.42	mm	

Résultats affichés par groupe

Cet outil permet de spécifier l'affichage de certains types de résultats pour un ou des groupes du maillage.

Exemple : isovaleurs de déplacement dans volume de gauche, vecteurs de déplacement dans volume droite supérieur, tenseurs de contraintes dans volume droit inférieur.

Afficher des résultats spécifiques sur un groupe sélectionné

- 1. Activer l'outil "Résultats affichés".
- 2. Capturer les données du volume par clic droit.
- 3. Cocher le ou les types de résultats à afficher sur le groupe sélectionné : isovaleur, vecteur, tenseur.
- 4. Appliquer.

Listing de résultats

Cet outil permet l'affichage du fichier de résultats généré par le « solveur » pour le modèle courant. L'activation d'un autre outil quelconque de la barre d'outils entraîne le retour à la visualisation graphique des résultats.

16. Courbes de résultats

Introduction

En sus des résultats graphiques directement affichés sur le modèle (isovaleurs, vecteurs, tenseurs...), il est également possible d'obtenir des résultats sous formes de « courbes x-y ». Les trois types de courbes suivantes sont disponibles.

- Evolution d'un paramètre le long d'une « ligne de coupe ». Ces courbes sont du type u = f(x) où u est le paramètre considéré et x l'abscisse curviligne le long de la ligne de coupe.
- Evolution d'un paramètre en fonction du temps (ou incrément) pour un « ensemble de points » donné.
- Evolution d'un paramètre en fonction d'un autre paramètre pour un « ensemble de points » donné.

Nous voyons ici que le tracé de ces courbes suppose la définition préalable des deux entités suivantes :

- Ligne de coupe.
- Ensemble de points.

Une ligne de coupe est constituée par un ensemble de « lignes » et de « segments » obligatoirement continu. Par « lignes » nous entendons ici des segments de droites créés dans le présent module et reliant des points ou nœuds du modèle. Par « segments », nous entendons de manière classique les bordures externes d'éléments.

O Points

Cet outil permet de définir un ou plusieurs points pouvant être utilisés soit pour intégration dans un « ensemble de points » soit pour la construction de lignes supports des « lignes de coupe ».

Définir des points

- 1. Activer l'outil « Points ».
- 2. Donner un nom au point à définir. Ce nom est ici utilisé dans le repérage des courbes pouvant être visualisées dans le module « Courbes de résultats ». Nous avons vu qu'il était en effet par exemple possible de visualiser l'évolution d'un paramètre en fonction du temps pour un « ensemble de points ». Ce genre de graphe est constitué par N courbes ; où N est ici le nombre de points de l'ensemble. Pour distinguer ces différentes courbes, le nom du point sera utilisé.
- 3. Définir les coordonnées X, Y du point.
- 4. « Appliquer » pour créer le point ainsi défini.
- 5. Répéter les séquences 2 et 3 pour l'ensemble des points à définir.
- Si les coordonnées du point coïncident avec celles d'un point existant, il est possible de récupérer ces dernières en cliquant sur le point à l'aide du bouton droit de la souris.

ං

○ ○ Ensembles de points

Cet outil permet de définir un ou plusieurs ensembles de points.

Il est nécessaire d'avoir au préalable défini des points avec l'outil "Points" pour pouvoir caractériser un tel groupe.

Définir des ensembles de points

- 1. Activer l'outil « Ensemble de points ».
- 2. Sélectionner les points devant faire partie de l'ensemble considéré.
- 3. Donner un nom à l'ensemble de points considéré.
- 4. « Appliquer » pour créer l'ensemble ainsi défini.
- 5. Répéter les séquences 1 à 4 pour tout nouvel ensemble de points.

Visualiser un ensemble de points

- 1. Activer l'outil « Ensemble de points ».
- 2. Sélectionner l'ensemble de points dans la liste proposée.
- 3. Cliquer sur le bouton « Montrer ». Les points appartenant à l'ensemble considéré sont sélectionnés dans la fenêtre graphique.

Concerning Lignes

Cet outil permet de définir des lignes pouvant être utilisés pour la définition de « lignes de coupe ». Par « ligne » nous entendons ici un ensemble continu de segments de droites reliant soit des points créés dans le présent module soit des points existants du modèle.

Définir une ligne

- 1. Activer l'outil « Lignes ».
- 2. Cliquer sur les points ou nœuds successifs constituant la ligne (ligne brisée).
- 3. Double cliquer sur le dernier point ou nœud pour terminer la séquence de définition de la ligne. La prise en compte de cette dernière est signalée par sa coloration en « rouge ».

C=O C==O Lignes de coupe

Cet outil permet de définir une ou plusieurs lignes de coupe.

Définir des lignes de coupes

- 1. Activer l'outil « Lignes de coupe ».
- 2. Sélectionner les lignes et (ou) segments constituant la ligne de coupe. Ces lignes et segments doivent ici constituer un tout continu.
- 3. Donner un nom à la ligne de coupe considérée.
- 4. « Appliquer » pour créer la ligne de coupe ainsi définie. La prise en compte de cette définition est signalée par la représentation d'une flèche indiquant le sens de chacun des éléments constitutifs de la coupe.
- 5. Répéter les séquences 1 à 4 pour toute nouvelle ligne de coupe.

Visualiser une ligne de coupe

- 1. Activer l'outil « Lignes de coupe ».
- 2. Sélectionner la ligne de coupe dans la liste proposée.
- 3. Cliquer sur le bouton « Montrer ». La ligne de coupe considérée est sélectionnée dans la fenêtre graphique.

Inversion du sens de lignes de coupe

Chaque ligne de coupe possède un « sens ». Ce sens est utilisé pour définir les abscisses curvilignes x croissantes dans le tracé de graphes. Le présent outil permet d'inverser le sens affecté par défaut aux lignes de coupe sélectionnées.

Inverser le sens de lignes de coupes

- 1. Sélectionner les lignes de coupe dont on veut inverser le sens.
- 2. Activer l'outil « Inversion du sens de lignes de coupe ».
- 3. Cliquer sur le bouton « Appliquer ».

Évolution d'un paramètre suivant une ligne de coupe

Cet outil permet l'obtention de graphes x-y montrant l'évolution d'un paramètre donné le long d'une ligne de coupe. L'axe x porte ici l'abscisse curviligne développée le long de la ligne de coupe ; l'axe y le paramètre considéré.

Dans le cas particulier où le modèle considéré correspond à un calcul fonction du temps ou incrémental, l'évolution du paramètre considéré peut être obtenue pour une liste de pas de temps (incréments) définie par l'utilisateur.

Les paramètres du graphe représenté peuvent être réglés grâce à l'outil « Options de visualisation courbes ».

Il est nécessaire d'avoir au préalable défini au moins une ligne de coupe dans le module "Définition d'ensembles de points et de lignes de coupes" pour pouvoir utiliser le présent outil.

Définir un graphe "Évolution d'un paramètre suivant une ligne de coupe"

- 1. Activer l'outil « Évolution paramètre suivant une ligne de coupe ».
- 2. Dans la liste déroulante notée « Choix du paramètre », choisir le paramètre dont on veut étudier l'évolution le long de la ligne de coupe.
- 3. Choisir la ligne de coupe considérée dans la liste déroulante correspondante.
- 4. Parmi la liste des incréments disponibles sélectionner les incréments retenus pour l'étude
- 5. "Appliquer". Le graphique est généré.

Evolution d'un paramètre en fonction du temps (incréments) pour un ensemble de points

Cet outil permet l'obtention d'un graphe présentant l'évolution d'un paramètre en fonction du temps (incréments) pour un ensemble de points. Une courbe par point est ici présentée sur le graphe.

Il est nécessaire d'avoir au préalable défini au moins un ensemble de points dans le module "Définition d'ensembles de points et de lignes de coupes" pour pouvoir utiliser le présent outil.

Définir un graphe "Évolution d'un paramètre pour un ensemble de points"

- 1. Activer l'outil « Évolution d'un paramètre en fonction du temps (incréments) pour un ensemble de points ».
- 2. Choisir le paramètre considéré dans la liste déroulante proposée.
- 3. Choisir ensuite l'ensemble de points considéré dans la seconde liste déroulante proposée.
- 4. "Appliquer". Le graphique est généré.
- 5. Répéter les séquences 2 à 4 pour modifier le paramètre ou l'ensemble de points sélectionnés.

Paramètre fonction d'un paramètre

Cet outil permet l'obtention d'un graphe présentant l'évolution fonction du temps (incréments) d'un paramètre en fonction d'un autre paramètre pour un ensemble de points. Une courbe par point est ici présentée sur le graphe.

Il est nécessaire d'avoir au préalable défini au moins un ensemble de points dans le module "Définition d'ensembles de points et de lignes de coupes" pour pouvoir utiliser le présent outil.

Définir un graphe "Paramètre fonction de paramètre"

- 1. Activer l'outil « Paramètre fonction d'un paramètre ».
- 2. Choisir le paramètre présenté en abscisse dans la première liste déroulante proposée.
- 3. Choisir le paramètre présenté en ordonnée dans la seconde liste déroulante proposée.
- 4. Choisir ensuite l'ensemble de points considéré.
- 5. "Appliquer". Le graphique est généré.
- 6. Répéter les séquences 2 à 4 pour modifier les paramètres ou l'ensemble de points sélectionnés.

Options de visualisation des courbes

Cet outil permet le paramétrage des éléments du graphique (axes, courbes...) défini au préalable. Les deux premières sections de la grille permettent le paramétrage des axes x et y. Pour chaque axe, il est en effet possible de régler les éléments suivants :

- Titre de l'axe considéré.
- Valeurs Min et Max définissant l'intervalle de variation des valeurs suivant l'axe considéré.
- Intervalle séparant deux traits de la « grille » primaire.
- Définition de la grille secondaire par la donnée du nombre d'intervalles (tics) entre deux traits de la grille primaire.
- Visibilité des grilles primaires et secondaires.

La troisième section permet le réglage du mode de représentation de chaque courbe du graphe. Pour chaque courbe, il est possible de régler les éléments suivants :

- Couleur de tracé de la courbe.
- Type de « marqueur » utilisé pour les points de la courbe.

Appliquer Graphique Titre du graphique Cross section: cross 1 Réglages de l'axe des abscisses Nom Length (m) X min [m] 0.000 X max [m] 2.490 Grille primaire ✓ dX [m] 0.200 Grille secondaire □ Nombre de tics 5 Z Réglages de l'axe des abscisses Nombre de tics 5 Z Réglages de l'axe des abscisses Nom v (mm) Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire ✓ dY [mm] 0.010 Grille secondaire □ Nombre de tics 5 Z Réglages des graphiques Courbe Increment_1 Color 00FF00 Sympole Cross		₽ ×							
☐ Graphique Titre du graphique Cross section: cross 1 ☐ Réglages de l'axe des abscisses Nom Length (m) X min [m] 0.000 X max [m] 2.490 Grille primaire ✓ dX [m] 0.200 Grille secondaire □ Nombre de tics 5 ✓ Réglages de l'axe des abscisses Nom v (mm) Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire ✓ dY [mm] 0.010 Grille secondaire □ Nombre de tics 5 ✓ Réglages des graphiques Courbe Increment_1 Color 00FF00 Sympole Cross	Appliquer								
Titre du graphique Cross section: cross 1 Réglages de l'axe des Juscieses Nom Length (m) X min [m] 0.000 X max [m] 2.490 Grille primaire Image: Comparison of	⊿ Graphique								
Acceleration Réglages de l'axe des abscisses Nom Length (m) X min [m] 0.000 X max [m] 2.490 Grille primaire ✓ dX [m] 0.200 Grille secondaire □ Nombre de tics 5 Acéglages de l'axe des abscisses Nom Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire ✓ dY [mm] 0.010 Grille secondaire □ Nombre de tics 5 Acéglages des graphiques ✓ Courbe Increment_1 Color OOFF00	Titre du graphique	Cross section: cross 1							
Nom Length (m) X min [m] 0.000 X max [m] 2.490 Grille primaire Image: Constant of the secondaire dX [m] 0.200 Grille secondaire Image: Constant of the secondaire Nombre de tics 5 A Kéglages de l'axe des abscisses Nom Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire Image: Constant of the secondaire dY [mm] 0.010 Grille secondaire 5 Nombre de tics 5 A Kéglages des graphiques Courbe Color Increment_1 Symphole Cross	A Réglages de l'axe des abscisses								
X min [m] 0.000 X max [m] 2.490 Grille primaire Image: Constant of the secondaire dX [m] 0.200 Grille secondaire Image: Constant of the secondaire Nombre de tics 5 A Kéglages de l'axe des abscisses Nom v (mm) Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire Image: Constant of the secondaire Mombre de tics 5 A Kéglages des graphiques Courbe Color Increment_1 Symbole Cross	Nom	Length (m)							
X max [m] 2.490 Grille primaire Image: Constant of the secondaire dX [m] 0.200 Grille secondaire Image: Constant of the secondaire Nombre de tics 5 Arrow for the secondaire Image: Constant of the secondaire Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire Image: Constant of the secondaire Nombre de tics 5 X reglages des graphiques Color Increment_1 Sympole Cross	X min [m]	0.000							
Grille primaire Image: Constant of the second and t	X max [m]	2.490							
dX [m] 0.200 Grille secondaire Nombre de tics 5 Réglages de l'axe des abscisses Nom v (mm) Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire Ø dY [mm] 0.010 Grille secondaire Nombre de tics 5 Réglages des graphiques Courbe Increment_1 Symbole Cross	Grille primaire								
Grille secondaire Image: Secondaire Nombre de tics 5 Réglages de l'axe des abscisses Nom Ymin [mm] -0.468 Ymax [mm] -0.377 Grille primaire Image: Secondaire dY [mm] 0.010 Grille secondaire Image: Secondaire Nombre de tics 5 Réglages des graphiques Courbe Increment_1 Symbole Cross	dX [m]	0.200							
Nombre de tics 5 Réglages de l'axe des abscisses Nom v (mm) Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire ✓ dY [mm] 0.010 Grille secondaire □ Nombre de tics 5 Z Réglages des graphiques Courbe Increment_1 Symbole Cross	Grille secondaire								
A Réglages de l'axe des abscisses Nom v (mm) Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire ✓ dY [mm] 0.010 Grille secondaire □ Nombre de tics 5 ✓ Réglages des graphiques Courbe Increment_1 Symbole Cross	Nombre de tics	5							
Nom v (mm) Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire Image: Color mean state	A Réglages de l'axe des abscisses								
Y min [mm] -0.468 Y max [mm] -0.377 Grille primaire Image: Constant of the secondaire dY [mm] 0.010 Grille secondaire Image: Constant of the secondaire Nombre de tics 5 A Réglages des graphiques Courbe Color 00FF00 Sympole Cross	Nom	v (mm)							
Y max [mm] -0.377 Grille primaire Image: Constant of the second aire dY [mm] 0.010 Grille second aire Image: Constant of the second aire Nombre de tics 5 Réglages des graphiques Courbe Increment_1 Color 00FF00 Sympole Cross	Y min [mm]	-0.468							
Grille primaire Image: Constant of the second aire dY [mm] 0.010 Grille second aire Image: Constant of the second aire Nombre de tics 5 Arrow Réglages des graphiques Courbe Increment_1 Color 00FF00 Symphole Cross	Y max [mm]	-0.377							
dY [mm] 0.010 Grille secondaire	Grille primaire	\checkmark							
Grille secondaire Grille secondaire Nombre de tics Keglages des graphiques Courbe Color Color Color Cross Veglages Courbe Cross Veglages Cross Cross Cross Veglages Cross Cro	dY [mm]	0.010							
Nombre de tics 5 Réglages des graphiques Courbe Increment_1 Color 00FF00 Symphole Cross	Grille secondaire								
Réglages des graphiques Courbe Increment_1 Color 00FF00 Symbole Cross	Nombre de tics	5							
Courbe Increment_1 Color 00FF00 Symbole Cross	A Réglages des graphiq	Réglages des graphiques							
Color 00FF00	Courbe	Increment_1							
Symbole Cross	Color	00FF00							
	Symbole	Cross 🔹							

Régler les options de visualisation de tracé des courbes

- 1. Activer l'outil « Options de visualisation courbes ».
- 2. Modifier si nécessaire le nom du graphique
- 3. Régler les paramètres caractérisant l'axe X.

- 4. Régler les paramètres caractérisant l'axe Y.
- 5. Régler les paramètres (couleurs, type de marqueur) de chaque courbe.
- 6. Cliquer sur le bouton « Appliquer » pour terminer prendre en compte les réglages réalisés.

Stockage des résultats courbes

Cet outil permet le stockage sur fichier texte des informations (x ; y) utilisées pour le tracé des courbes du graphe courant.

Enregistrer les caractéristiques des courbes dans un fichier texte

1. Activer l'outil « Stockage des résultats courbes ». Une boîte de dialogue permet de définir le nom du fichier dans lequel seront stockées les informations considérées.

Les informations stockées sont sauvegardées avec un format tel qu'il est très facile de « récupérer » ces dernières dans un tableur quelconque afin de les traiter de manière particulière.

	A	В	С	D	
1	Length (m) - v				
2	Х	Incr 1	Incr 5	Incr 10	
3	1	-0.005502	-0.00911	-0.0317	
4	0.94661	-0.005114	-0.00849	-0.0298	
5	0.89322	-0.004726	-0.00786	-0.02791	
6	0.84468	-0.004373	-0.00729	-0.02619	

A1. Identification des scalaires résultats

Blocs surfaciques

Déplacements

- u_x Déplacement horizontal, direction Ox
- u_y Déplacement vertical, direction Oy
- θ_z Rotation autour de l'axe Oz (normale au plan)
- |u| Déplacement total

Déformations

- ε_xx Déformation
- ε_yy Déformation
- ε_xy Déformation
- ε_1 Déformation principale
- ε_2 Déformation principale
- ε_xx,p Déformation plastique
- ε_yy,p Déformation plastique
- ε_xy,p Déformation plastique
- ε_1,p Déformation plastique principale
- ε_2,p Déformation plastique principale
- ε_xx,t Déformation totale
- ε_yy,t Déformation totale
- ε_xy,t Déformation totale
- ε_1,t Déformation totale principale
- ε_2,t Déformation totale principale
- |ε_p| Norme de la déformation plastique

Contraintes

- σ_xx Contrainte
- σ_yy Contrainte
- σ_xy Contrainte
- σ_1 Contrainte principale
- σ_2 Contrainte principale
- $|\sigma_1|$ Contrainte principale (valeur absolue)
- $|\sigma_2|$ Contrainte principale (valeur absolue)
- σ_s Contrainte de cisaillement
- σ_t Traction

σ_c Compression

Contraintes dans les massifs renforcés

- σ_xx,m Contrainte dans la matrice
- σ_xx,r1 Contrainte dans renforcement 1
- σ_xx,r2 Contrainte dans renforcement 2
- σ_xx , sum Somme des contrainte dans les 2 renforcements
- σ_yy,m Contrainte dans la matrice
- σ_yy,r1 Contrainte dans renforcement 1
- σ_yy,r2 Contrainte dans renforcement 2
- σ_yy ,sum Somme des contrainte dans les 2 renforcements
- σ_xy,m Contrainte dans la matrice
- σ_xy,r1 Contrainte dans renforcement 1
- σ_xy,r2 Contrainte dans renforcement 2
- σ_xy , sum Somme des contrainte dans les 2 renforcements
- σ_1,m Contrainte dans la matrice
- σ_1,r1 Contrainte dans renforcement 1
- σ_1,r2 Contrainte dans renforcement 2
- σ_1,sum Somme des contrainte dans les 2 renforcements
- σ_2,m Contrainte dans la matrice
- σ_2,r1 Contrainte dans renforcement 1
- $\sigma_2,r2$ Contrainte dans renforcement 2
- σ_2 ,sum Somme des contrainte dans les 2 renforcements

Critères

- σ_tre Tresca
- σ_vm Von Mises
- σ_dp Drucker Prager
- σ_sm Contrainte de cisaillement maxi
- σ_com Combinaison de contraintes
- σ_cp Critère parabolique
- σ_cg Critère général
- p Contrainte moyenne
- q Contrainte déviatorique
- σ_rup Contraintes à la rupture

Hydrogéologie

- H Charge hydraulique
- P Pression
- w Teneur en eau
- ΔH_x Gradient de charge hydraulique, x
- ΔH_y Gradient de charge hydraulique, y
- ΔP_x Gradient de pression, x
- ΔP_y Gradient de pression, y
- vh_x Vitesse d'écoulement, x

vh_y Vitesse d'écoulement, y

vp_x Vitesse d'écoulement, x

vp_y Vitesse d'écoulement, y

Potentiel

Gradient de potentiel 2D

Vitesse en potentiel 2D

Gradient de potentiel x

Gradient de potentiel y

Vitesse en potentiel x

Vitesse en potentiel y

Température

- T° Température
- ΔT°_x Gradient de température x
- ΔT°_y Gradient de température y
- ξ Degré d'hydratation
- vT°_x Vitesse en température x
- vT°_y Vitesse en température y

Blocs 1D (barres, poutres)

- N Effort normal
- Vy Effort de cisaillement
- Mz Moment de flexion
- δf Déplacement relatif (barre frottante)

Vecteurs

Mécanique

Déplacements 2D Rotations 2D Réactions 2D Moments de réaction 2D

Hydrogéologie

Gradient de pression 2D Gradient de charge hydraulique 2D Vitesse en charge hydraulique 2D Vitesse en pression 2D

Température

Gradient de température 2D Vitesse en température 2D

Tenseurs

Contraintes

Contraintes 2D Contraintes 2D, matrice Contraintes 2D, phase de renforcement 1 Contraintes 2D, phase de renforcement 2 Contraintes 2D, somme des deux phases de renforcement

Déformations

Déformations 2D Déformations plastiques 2D Déformations totales 2D

Site web : www.cesar-lcpc.com Contact : cesar-lcpc@itech-soft.com Tél : +33 (0)1 49 76 12 59

> 8 quai de Bir Hakeim F-94410 Saint-Maurice www.itech-soft.com

14-20 Boulevard Newton Cité Descartes, Champs sur Marne F-77447 Marne la Vallée Cedex 2 www.ifsttar.fr

