CESAR

General overview

© IFSTTAR-itech - 2019

Table of content

1. Introduction	4
1.1. About CESAR	4
1.2. History	5
1.3. CESAR models through versions	5
2. Graphical User Interface	11
2.1. General overview	11
2.1.1. The tabs – The various project stages	12
2.1.2. Model tree diagrams	12
2.1.3. Data tree diagram	13
2.2. CAD tools	14
2.3. Meshing features	16
2.3.1. Surface meshing	16
2.3.2. 3D mesh - Tetrahedron mesh generator	17
2.3.3. 3D mesh - Extrusion procedure	18
2.4. Analysis of results	Erreur ! Signet non défini.
2.4.1. Display of results	Erreur ! Signet non défini.
2.4.2. Tables and graphs of results	Erreur ! Signet non défini.
3. Analysis features	23
3.1. Elements library	23
3.2. Constitutive models	24
3.2.1. Constitutive laws for the element families used in Mechani	cs and Geomechanics. 24

3.2.2. Toolbox for user constitutive model definition253.2.3. Constitutive laws for the element families used in Coupled analysis.27

3.3. Computation modules283.4. Initialisations of parametersErreur ! Signet non défini.3.5. Boundary conditions323.6. Loading features33

1. Introduction

1.1. About CESAR

CESAR-LCPC is an all-purpose software package based on the finite element method and adapted to resolving civil engineering and environmental problems: soil and rock mechanics, heat-related problems, hydrogeology, structural calculations, etc.

From the beginning of its development, the CESAR solver includes a wide variety of constitutive models and an extensive element library, results of the research effort of LCPC's teams.

Since version 5 of CESAR-LCPC, user benefits from a highly interactive graphical user interface and enriched meshing capabilities (tetrahedron meshes).

Civil engineering-based models assist the engineer in better understanding and mastering complex phenomena (explanatory models), as well as in designing and sizing structures (predictive decisionmaking models). Such models rely upon: an analysis of the phenomena under examination and their physical-mathematical representation, the numerical resolution of the corresponding set of equations, and comparisons with experimental results.

The main applications for CESAR-LCPC in geotechnical engineering are:

- Design of underground structures: tunnels, mines, storage facilities, deep excavations...
- Design of embankments, shallow and deep foundations (settlements and soil failure analysis),
- Slope stability analysis: cut or fill for highways, reinforced slopes, earth retaining structures...
- Seepage, dewatering and consolidation analyses.

The main applications for CESAR-LCPC in structural engineering are:

- Massive concrete structures (phenomena associated with young hardening concrete),
- Ancient buildings with masonry structures.
- Design of pavement structures for airport, tramway or other transport facilities.

1.2. History

The IFFSTAR, formerly known as the LCPC (Laboratoire Central des Ponts et Chaussées / Road and Public Works Research Institute), civil engineering research facility, has been involved with these modelbuilding efforts since the end of the 1960's and over the past thirty years has been focusing on the development of its CESAR-LCPC software package.

Development of the CESAR-LCPC product got underway towards the beginning of the 1980's as a definitive successor to the ROSALIE system (developed and revised by the LCPC between 1968 and 1983); Version 2.0 was initially released in 1986. CESAR-LCPC has been designed for continual revision and updating by virtue of its status as a research and development tool.

1.3. CESAR models through versions

We present below few models as illustrations of the version evolutions of CESAR from its early age until now. We focus here on **geotechnical applications** (foundations, excavation and tunnels).

More references on other modelling capacities of CESAR could be found for illustration of analyses of structures of Civil Engineering as bridges, ancient buildings or other expert projects.

Version 2.x (1986 > 1992)

Channel Tunnel analysis in the 90's

Version 3.x (1992 > 2003)

Version 4.x (2003 > 2009)

Version 5.x (2009 > 2014)

Introduction

Version 6.x (2014 > 2019)

Introduction

2. Graphical User Interface

2.1. General overview

The figure below displays the software interface along with its primary components.

« Start »				
button			Toolbar associa	ated
	General toolba	ar Tabs	with the active	e tab
		^		
	1			
		CESAR-CRC (2D) - study - (Geo	meinu)	+ _ 🗆 🗙
GEOMETRY	MESH PROPERTIE	BOUNDARY COLDITIONS LOADS ANALYSIS RESUL	TS CHARTS	OPTIONS -
Î . / (- 4 I I I I I I I I I I I I I I I I I I	🔨 🔏 🟛 🚳	un a - • ♥ ① - · ¥
Tools	Sketch	Body construction Spe	ecial bodies	Edit
Points	Ψ×	🥯 🗞 🏼 🖸 🔍 🗇 🗖 💩 📉 🔽 🔯 🗟 🖷 🗉	20 😼	Study # ×
Apply				Data tree Update
Definition		T Selections toolbar		⊿ 🗐 MODELS
X [m]	0.000			STATICS
Y [m]	0.000			
Absolute Relative				
Linked points		B1 1 1 1 1		EARLY-AGE CONCRETE
Coordinates of reference	nce point	Dialogue grid associated		CONSOLIDATION
Xr [m]	0.000	with active tool		COUPLED PROBLEMS
Yr [m]	0.000			
			ree explorer	
		For m	odels / data	
			oucis / uutu	
Generation of points in the	e current coordinate system.		🎽	
line.	leet last current point with a		<mark>.</mark>	
	•	information area	🖕 👞 X	
		(-0.200m,0.800m,0.000m), (-0.200m,0.800m) Mouse	mode: Select	

2.1.1. The tabs – The various project stages

The interface then offers the user a series of "tabs" corresponding to the various project execution stages.

Generally speaking, activating a tab triggers the display of a specialized toolbar that allows performing the particular stage under consideration (e.g. Geometry, Mesh, Properties).

As a default, CESAR 3D proposes the following tabs:

- Geometry: Definition of the structural geometry.
- Mesh: Definition of the structural mesh.
- Properties: Definition of the model's "properties" (materials, cross-sections, etc.).
- Boundary conditions: Definition of the sets of boundary conditions.
- Loads: Definition of loads sets.
- Analysis: Execution of the computations.
- Results: Graphical visualization of results.
- Charts: Visualization of results in the form of charts.

2.1.2. Model tree diagrams

This work space serves to visualize in real time the set of models created the set of models created as well as their contents.

Presented in a Windows Explorer format, this space makes it possible to know at any time which is the active entity (load case, properties, boundary conditions, etc.), as it is always displayed in bold.

Double-clicking on an entity (e.g. load case) automatically updates the work space display so that it now corresponds to this choice.

The diagram beside lists 5 Mechanics models (stages #1 to #5).

2.1.3. Data tree diagram

A single click shifts from the model tree diagram to the data tree diagram.

The data tree diagram provides access to the list of bodies composing the model. Select any one of these listed bodies by simply clicking on it.

Study		Ψ×
Calculations tree	Update 📴 📃	

For each entity (load case, boundary conditions, etc.), the list of data the user has assigned to the entity can be called up.

Example 1: List of loadings associated with the "LoadSet1" load case:

- A uniform pressure type of mechanical loading (MECH_P),
- A hydrostatic pressure type of mechanical loading (MECH_PH),
- A gravity force type of mechanical loading (MECH_FG).
- -...

Example 2: List of the model's constitutive bodies:

- 2 volume bodies,
- 1 one-dimensional body,
- 1 surface body.

2.2. CAD tools

Using CESAR-LCPC, user will access advanced geometry modelling features. These are necessary to achieve 2D as well as 3D complex analysis.

Data exchange is also possible with other CAD software (dxf or LandXML imports for example).

Standard tools enable the user to easily define and edit the structure's geometry.

- Definition of lines, circles, ellipses, splines, predefined structures,
- Definition of surfaces: planes, cylinders, Coons patches ...,
- Translation, rotation and symmetry operations,
- Intersection of lines, surfaces...

Intersections

- Volume/volume
- Volume/surface
- Surface/surface
- Surface/line
- Line/line
- Line/surface

LandXML import

With development of 3D models and investigations of landslides, accurate representation of the site geometry is becoming important. The LandXML format is helpful to import this relevant information.

Example of imported LandXML files (3 surfaces)

B-Spline Surfaces

Non-uniform rational basis spline is a mathematical model commonly used in computer graphics for generating and representing curves and surfaces which offers great flexibility and precision for handling both analytic and freeform shapes.

In CESAR-LCPC, NURBS are controlled by an external boundary and inner points.

Using these NURBS is useful for modelling of complex geotechnical or structural problems.

Volumes of any shape

With the same objectives of the NURBS, volumes of any shapes are fundamental for complex geotechnical or structural models.

CESAR-LCPC enables the generation of volumes closed by surfaces of any type.

Example of volumes

2.3. Meshing features

2.3.1. Surface meshing

Surface meshing is the common procedure for 2D models as well for shell elements generation. Surface meshes are quadrangular or triangular, depending of the geometry of the supporting surface.

CESAR-LCPC proposes 3 levels of filling surfaces using mesh algorithms: linear, quadratic or cubic. These levels are useful to generate transition meshes from refined areas to lose areas.

These algorithms are also used for surface mesh generation in 3D (shell and plates elements).

Example of 2D mesh evolution depending on the algorithm (from linear to cubic)

3D Surface meshes

2.3.2. 3D mesh - Tetrahedron mesh generator

In CESAR-LCPC, the user is free of geometrical constraints. This is made possible by using automatic tetrahedron mesh generators. Those fill the volume from its external surface mesh.

CESAR-LCPC offers 2 types of mesh generators:

- An integrated one, with option to define a mesh coarseness;
- An external one, "TETMESH-GHS3D", developed by INRIA and SIMULOG.

Example of 3D meshes

2.3.3. 3D mesh - Extrusion procedure

This procedure is useful when user designs models with a principal direction. In the GEOMETRY stage, a plane surface (horizontal or vertical) is designed and extruded. In the MESH stage, the user sets the density on this surface and all the extruded surfaces parallel to it. Then a density is set on all edges joining these parallel planes. This way, user forces the mesher to generate a regular mesh along the principal direction.

embankment - regular extruded geometry and the resulting 3D mesh

tunnel - regular extruded geometry and the resulting 3D mesh

2.4. Result analysis

2.4.1. Result display

The visualization of results associated with the current model requires the following tools:

- Choice of type of results to be displayed
- Envelope of iso-surface scalar •
- γ Animation or choice of "entity" (increment, time step, etc.) to be displayed
- Mesh settings
- Deformed mesh settings
- Contour plot settings
- lso surfaces settings
- Vector settings
- K Tensor settings
- <u>V</u>1
- Beam and truss result settings
- Contact state display
- Legend settings
- Cut plane
- No. Plane section analysis
- (i) Information
- Results displayed by body

Forces in the structural element (truss and beams)

Iso-surfaces of displacement in a 3D modle of tunnel

2.4.2. Result tables and charts

In addition to views of the results, user will access and analyse data through extensive tables and charts. For every scalar result of the calculations, it is possible to access full tables per element or body. It is also easy to export these tables for analysis with external tools (MS Excel for example).

Tuto14-(MO	DEL_4)-(Entity ×					
← → C ☆ IIe:///D:/CESAR-LCPCv60/User/Tmp/Tuto14-(MODEL_4)-(Ent☆ Ξ						
CESOR6	CESAR-LCPC				-	
Nem du fishier	Dull anisials/CECAD/D			14\Tube14_elee26		
Nom du nomer	MODEL 4	ocumentation (Do	cumentation vo.o (rutorial	14(10014.00050		
Nom au modele	MODEL_4					
3D Displacement	nts[NodesByGroup] (Groupe : 8)				
Id	u [mm]	۷	/ [mm]	w [mm]		
1		0.4	0.9	-1.3		
2		0.5	1.0	-1.4		
3		0.6	1.0	-1.5		
4		0.6	1.1	-1.7		
5		0.6	1.1	-1.9		
6		0.5	1.1	-2.1		
7		0.5	1.1	-2.2		
8		0.4	1.1	-2.2		
9		0.4	1.1	-2.1		
10		0.6	1.1	-1.6		
11		0.6	1.1	-1.7		
12		0.6	1.1	-1.8	Ŧ	

Three types of charts are available.

3. Analysis features

We present here the main components of the solver. User will refer to theoretical manual or reference manual to get a complete and detailed information.

3.1. Elements library

All the elements in CESAR are grouped in "families". The following table describes the available element families in the current version of the software.

Mechanics

Family 1	Two-dimensional isoparametric displacement-type elements
Family 2	Three-dimensional isoparametric displacement-type elements
Family 3	Two-dimensional beam element
Family 4	Three-dimensional beam element
Family 5	Shell elements
Family 6	(2D, 3D) Contact elements
Family 7	Two-dimensional truss elements
Family 8	Three-dimensional truss elements
Family 11	Axisymmetrical isoparametric displacement-type elements for the computation of structures with a revolution-based geometry submitted to any loading

Diffusion

Family 21	Two-dimensional isoparametric diffusion-type elements
Family 22	Three-dimensional isoparametric diffusion-type elements
Family 23	Two-dimensional exchange elements
Family 24	Three-dimensional exchange elements
Family 25	Discontinuous elements for identifying a free surface (plane problems)

Coupling

Family 41	Two-dimensional isoparametric elements with three degrees of freedom per node (two displacements, hydraulic load) for consolidation problems
Family 42	Three-dimensional isoparametric elements with four degrees of freedom per node (three displacements, hydraulic load) for consolidation problems
Family 45	Two-dimensional isoparametric elements with four degrees of freedom per node (two displacements, pore pressure, temperature) for thermomechanical problems in porous media
Family 46	Three-dimensional isoparametric elements with five degrees of freedom per node (three displacements, pore pressure, temperature) for thermomechanical problems in porous media

3.2. Constitutive models

3.2.1. Constitutive laws for the element families used in mechanics and geomechanics.

Family	Constitutive model	Type of material
Family 1	 Elasticity: isotropic linear orthotropic linear with isotropic dilatancy Elastoplasticity, criterion: Mohr-Coulomb (with or without strain hardening, with or without orthotropic elasticity) Tresca Von Mises (with or without strain hardening) Drücker-Prager (with or without strain hardening) parabolic Vermeer Nova modified Cam-Clay Prevost and Hoëg oriented Melanie Willam - Warnke Hoek - Brown 	sand, clay, rock clay metals sand, clay, rock concrete sand clay rock stratified medium clay concrete rock concrete
Family 2	 Elasticity: isotropic linear orthotropic linear with isotropic dilatancy Elastoplasticity, criterion: Mohr-Coulomb Von Mises (with or without strain hardening) Drücker-Prager (with or without strain hardening) parabolic Vermeer Nova modified Cam-Clay Prevost and Hoëg oriented Willam - Warnke Hoek - Brown Other: early-age concrete 	sand, clay, rock metals sand, clay, rock concrete sand sand clay rock stratified medium concrete rock concrete
Families 3, 4, 5, 7, 8 and 11	Linear isotropic elasticity	
Family 6	Contact laws: – bonding – Coulomb friction – perfect slippage	

3.2.2. Toolbox for user constitutive model definition

Elastic laws

- Homogeneous isotropic linear elasticity
- Homogeneous orthotropic linear elasticity
- Isotropic linear elasticity with E and v varying linearly with depth
- Isotropic linear elasticity with E = f(z)
- Non-linear elasticity of the Hardening Soil Model
- Non-linear elasticity of Cam-Clay
- Non-linear elasticity of Duncan
- Non-linear elasticity of Fahey-Carter

Plasticity criterions

- Coulomb
- Mohr-Coulomb
- Hardening Soil Model
- Hoek-Brown
- Mohr-Coulomb with c and φ = f(z)
- Drucker-Prager
- Modified Cam-Clay
- Tresca
- von Mises
- Parabolic criterion
- Oriented criterion
- Hill
- Hill modified
- HiSS model (Desai)
- Prager (for non-linear kinematic hardening)
- S-Clay 1
- Drucker Prager (non-linear kinematic hardening)
- Hill Lourenço
- Hill Lourenço (variant)
- Hiss model (variant)

Example 1: Simple non-supported excavation

With this simple model, an excavation without supports is analysed. The soil is modelized by an elastic law with a Drücker-Prager criterion, then by an elastic law with a Oriented criterion and finally by an elastic law with both Drücker-Prager and Oriented criterions. Results presented below show that the influence of both criterions is well taken into account.

CESAR

Example 2

A pile is driven in a uniform soil mass and a cyclic loading is applied at its top. The soil is modelled by a combination of an elastic law with a Drücker-Prager criterion and a nonlinear kinematic hardening. Results presented below show the ability of this model to represent the displacements accumulation with number of cycles.

Family	Constitutive model
Family 41	Mechanics: – linear isotropic elasticity – linear orthotropic elasticity Hydraulics: – anisotropic behaviour
Family 42	Mechanics: – linear isotropic elasticity Hydraulics: – anisotropic behaviour
Family 45	 Thermo-poro-elasticity: isotropic linear orthotropic linear with isotropic dilatancy Thermo-poro-elastoplasticity, criterion: Mohr-Coulomb Tresca Von Mises (with or without strain hardening) Drücker-Prager (with or without strain hardening) parabolic Vermeer Nova modified Cam-Clay Prevost and Hoëg oriented
Family 46	Thermo-poro-elasticity:-isotropic linear-orthotropic linear-with isotropic dilatancyThermo-poro-elastoplasticity, criterion:-Von Mises (with or without strain hardening)-Drücker-Prager (with or without strain hardening)-parabolic-Vermeer-Nova-modified Cam-Clay-Prevost and Hoëg-oriented

3.2.3. Constitutive laws for the element families used in Coupled analysis.

3.3. Computation modules

We list here the computation modules, which are available in the present version of CESAR. Every module is characterized by a key word based on acronyms.

The above table defines the elementary physical problems associated to each calculation module for a given field of application.

Field of appli	cation: Statics	
Module	Function	Physics
LINE	Resolution of a linear problem by means of the direct method	Mechanics
MCNL	Resolution of a mechanics problem exhibiting non-linear	Mechanics
	behaviour	
TCNL	Resolution of a contact problem between elastoplastic solids	Mechanics
Field of appli	cation: Dynamics	
Module	Function	
DYNI	Determination of response to a dynamic load by means of direct	Mechanics
	integration for linear elastic structures	
MODE	Determination of eigenmodes: Eigenvalues and eigenvectors	Mechanics
SUMO	Determination of the response to a dynamic load by means of	Mechanics
	modal superposition	
FLAM	Search for buckling modes	Mechanics
LINC	Determination of response to a harmonic load with damping	Mechanics
	(resolution of a linear problem in complex variables)	
LINH	Determination of response to a harmonic load without damping	Mechanics
Field of appli	cation: Hydrogeology	
Module	Function	
DTNL	Resolution of a non-linear transient hydrogeology problem	Hydrogeology
NSAT	Resolution of a flow problem in unsaturated porous media	Hydrogeology
	(transient state)	
LINE	Resolution of a flow problem in permanent state	Hydrogeology
Field of appli	cation: Heat transfer	
Module	Function	
DTNL	Resolution of a non-linear transient thermal problem	Heat transfer
LINE	Resolution of a thermal problem in permanent state	Heat transfer
Field of appli	cation: Concrete at early age	
MEXO	Evolution of stresses in early-age concrete	Mechanics
TEXO	Computation of the temperature field evolution in a concrete	Heat transfer
	specimen during setting (transient state)	
Field of appli	cation: Consolidation	
Module	Function	
CSNL	Resolution of a consolidation problem involving saturated	Mechanics
	elasto-plastic materials	Hydrogeology
Field of appli	cation: Coupled problems	
Module	Function	
MPNL	Resolution of a non-linear evolution problem in a porous	Mechanics
	medium with thermal coupling (thermo-poro-plasticity)	Hydrogeology
		Heat transfer

3.3.1. Mechanics: stage construction

- 3.3.2. Mechanics: c-phi reduction analysis
- 3.3.3. Mechanics: Safety factor analysis
- **3.3.4. Hydrogeology: flow in unsaturated soils**
- 3.3.5. Consolidation

3.4. Parameter initialization

Activating the "Initial Parameters" tab has the following effect:

- displays a toolbox to allow initializing the parameters included in the current model;
- displays a view representing the given model in the screen's graphics workspace. Note herein that the initial parameters are not being explicitly visualized from a graphical perspective.

	∕ ~ = = 🔣 🧈 🖗				-		_		-	-	_	CE	
	GEOMETRY	MESH	PROPERTI	ES	INITIAL PARAM	ETERS	BO	UNDARY CONI	DITIONS	LC	ADS	ANALYSIS	RESU
Model1	•	D		S	*Si+ σ	Si	т	θ	θ	Р	P	₽₽р	P
	Model	Dis	placements		Stress			lemperature			_	Pressure	

The tools proposed in the toolbox are updated on the basis of the parameter selected from the multiplechoice list.

We present below the set of tools associated with each of the six parameters capable of being initialized.

Parameter	Tool
Displacements	Displacement field of a rigid solid
	U Input of the displacement field from a file
Speeds	Speed field of a rigid solid
	Input of the speed field from a file
Stresses	
	Geostatic stresses
	Input of initial stresses from a file
Hydraulic load	b Uniform load at any point
	Position-based load
	h Input of the load from an external file
	h Uniform load by group
Temperature	igoplus Uniform temperature at any point
	Input of the temperature from an external file
	${}^{\bullet} heta$ Uniform temperature by group
Pressure	Duniform pressure at any point
	Position-based pressure
	Input of the pressure from an external file
	P Uniform pressure by group

3.4.1. Initial stress field

For geotechnical analysis, initial stress field is a key step. User will take benefit of 3 methods of initialisations:

- 1. Geostatic stress field
- 2. Gravity stress field
- 3. Uniform stress field

Geostatic stress field

- Ко
- OCR

Gravity stress field

Uniform stress field

3.5. Boundary conditions

In order to account for the eventual multiplicity of elementary physical problems, the toolbox serving to define boundary conditions will be updated to appear as follows:

Tools for the mechanical elementary problem

The set of tools associated with each of the potentially-applicable elementary physical problems have been listed below.

Elementary physical problem	Tools
Mechanics (M)	Sides and bottom (w=0) supports
	\blacksquare Sides and bottom (u=v=w=0) supports
	Sides, top and bottom (w=0) supports
	General definition of imposed displacements
	Coordinate system changes for supports
Hydrogeology (H)	h Imposed load
	Imposed load varying linearly with depth
	Seepage conditions
	Exchange conditions
Heat transfer (T)	$\overline{\mathbf{\Theta}}$ Imposed temperature
	2002 Exchange conditions
Pressure (P)	P Imposed pressure
	Exchange conditions

3.6. Loading features

In order to account for the eventual multiplicity of elementary physical problems, the toolbox used for defining a load case will be designed to appear as follows:

Buttons for activation of the mechanical elementary problem	
	i ☞σ ♂ 7 ⊨ ▼ ▼ ↓ ↑ ∰ ₩ ₩ ₩ al
Tools of the mechanica	l elementary problem
Elementary physical problem	Tools
Mechanics (M)	Nodal forces
	Uniformly-distributed pressure
	Non uniformly distributed pressure
	🥙 Surface forces
	Hydrostatic pressure
	Transformation forces
	Gravitational forces
	Constant stresses
	Stress field input from a file
	Thermal stresses
	Long-term effects
	Water table movements
Hydrogeology	Uniformly-distributed flow
(H)	* Point flow rate
	Volumic flow rate
Heat transfer	Uniformly-distributed flow
(T)	* Point flow rate
	Volumic flow rate
Pressure	Uniformly-distributed flow
(P)	Point flow rate
	Volumic flow rate

www.cesar-lcpc.com Contact: cesar-lcpc@itech-soft.com Tel.: +33 (0)1 49 76 12 59

 IFSTTAR
 8 quai de Bir Hakeım

 F-94410 Saint-Maurice
 www.itech-soft.com

 14-20 Boulevard Newton
 Cité Descartes, Champs sur Marne

 F-77447 Marne Ia Vallée Cedex 2
 ifettar fr

 www.ifsttar.fr